Advertisement

An Automatic Grasp Planning System for Multi-fingered Robotic Hands

  • Zhixing Xue
  • Steffen W. Rühl
  • J. Marius Zöllner
  • Rüdiger Dillmann
Chapter
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 76)

Abstract

Grasping is a key function of service robots to help people in handling their household tasks. In order to grasp real world objects, automatic grasp planning systems are needed. In this article, a complete grasp planning system is introduced, which can plan feasible grasps and execute them with real robotic hands.

Keywords

Service Robot Friction Cone Robotic Hand Force Closure Grasp Planning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baier, T., Zhang, J.: Reusability-based semantics for grasp evaluation in context of service robotics. In: IEEE International Conference on Robotics and Biomimetics, pp. 703–708 (2006)Google Scholar
  2. 2.
    Borst, C., Fischer, M., Hirzinger, G.: Grasping the dice by dicing the grasp. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 4, pp. 3692–3697 (2003)Google Scholar
  3. 3.
    Borst, C., Fischer, M., Hirzinger, G.: Efficient and precise grasp planning for real world objects. In: Barbagli, F., Prattichizzo, D., Salisbury, K. (eds.) Multi-point Interaction with Real and Virtual Objects. STAR, vol. 18, pp. 91–111. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Buss, M., Hashimoto, H., Moore, J.B.: Dextrous hand grasping force optimization. IEEE Transactions on Robotics and Automation 12, 406–418 (1996)CrossRefGoogle Scholar
  5. 5.
    Ciocarlie, M., Goldfeder, C., Allen, P.: Dimensionality reduction for hand-independent dexterous robotic grasping. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3270–3275 (2007)Google Scholar
  6. 6.
    Ferrari, C., Canny, J.: Planning optimal grasps. In: IEEE International Conference on Robotics and Automation, pp. 2290–2295 (1992)Google Scholar
  7. 7.
    Goldfeder, C., Allen, P.K., Lackner, C., Pelossof, R.: Grasp planning via decomposition trees. In: IEEE International Conference on Robotics and Automation, pp. 4679–4684 (2007)Google Scholar
  8. 8.
    Han, L., Trinkle, J.C., Li, Z.: Grasp analysis as linear matrix inequality problems. IEEE Transactions on Robotics and Automation 16, 663–674 (2000)CrossRefGoogle Scholar
  9. 9.
    Haschke, R., Steil, J.J., Steuwer, I., Ritter, H.: Task-oriented quality measures for dextrous grasping. In: Conference on Computational Intelligence in Robotics and Automation, IEEE (2005)Google Scholar
  10. 10.
    Kirkpatrick, D., Mishra, B., Keng Yap, C.: Quantitative steinitz’s theorems with applications to multifingered grasping. In: 20th ACM Symposium on Theory of Computing, pp. 341–351 (1990)Google Scholar
  11. 11.
    Liu, G., Li, Z.: Real-time grasping-force optimization for multifingered manipulation: theory and experiments. IEEE/ASME Transactions on Mechatronics 9, 65–77 (2004)CrossRefGoogle Scholar
  12. 12.
    Miller, A.T., Allen, P.K.: Graspit! a versatile simulator for robotic grasping. IEEE Robotics & Automation Magazine 11(4), 110–122 (2004)CrossRefGoogle Scholar
  13. 13.
    Miller, A.T., Knoop, S., Christensen, H.I., Allen, P.K.: Automatic grasp planning using shape primitives. In: IEEE International Conference on Robotics and Automation, vol. 2, pp. 1824–1829 (2003)Google Scholar
  14. 14.
    Mirtich, B.V.: Impulse-based dynamic simulation of rigid body systems. Ph.D. thesis, University of California, Berkeley (1996)Google Scholar
  15. 15.
    Prats, M., Sanz, P.J., del Pobil, A.P.: Task-oriented grasping using hand preshapes and task frames. In: IEEE International Conference on Robotics and Automation, pp. 1794–1799 (2007)Google Scholar
  16. 16.
    Saut, J.-P., Remond, C., Perdereau, V., Drouin, M.: Online computation of grasping force in multi-fingered hands. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1223–1228 (2005)Google Scholar
  17. 17.
    Suárez, R., Roa, M., Cornellà, J.: Grasp quality measures. Tech. rep., Institute of Industrial and Control Engineering. Technical University of Catalonia (2006)Google Scholar
  18. 18.
    Wimboeck, T., Ott, C., Hirzinger, G.: Passivity-based object-level impedance control for a multifingered hand. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4621–4627 (2006)Google Scholar
  19. 19.
    Xue, Z., Kasper, A., Zöllner, J.M., Dillmann, R.: An automatic grasp planning system for service robots. In: 14th International Conference on Advanced Robotics, ICAR (2009)Google Scholar
  20. 20.
    Xue, Z., Woerner, P., Zöllner, J.M., Dillmann, R.: Efficient grasp planning using continuous collision detection. In: IEEE International Conference on Mechatronics and Automation (ICMA), pp. 2752–2758 (2009)Google Scholar
  21. 21.
    Xue, Z., Zöllner, J.M., Dillmann, R.: Automatic optimal grasp planning based on found contact points. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pp. 1053–1058 (2008)Google Scholar
  22. 22.
    Xue, Z., Zöllner, J.M., Dillmann, R.: Planning regrasp operations for a multifingered robotic hand. In: IEEE Conference on Automation Science and Engineering (CASE), pp. 778–783 (2008)Google Scholar
  23. 23.
    Zhang, X., Lee, M., Kim, Y.J.: Interactive continuous collision detection for non-convex polyhedra. In: Pacific Graphics (2006)Google Scholar
  24. 24.
    Zhang, X., Redon, S., Lee, M., Kim, Y.J.: Continuous collision detection for articulated models using taylor models and temporal culling. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2007) 26(3) (2007)Google Scholar
  25. 25.
    Zhu, X., Wang, J.: Synthesis of force-closure grasps on 3-d objects based on the q distance. IEEE Transactions on Robotics and Automation, 669–679 (2003)Google Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  • Zhixing Xue
    • 1
  • Steffen W. Rühl
    • 1
  • J. Marius Zöllner
    • 1
  • Rüdiger Dillmann
    • 1
  1. 1.Forschungszentrum Informatik (FZI)KarlsruheGermany

Personalised recommendations