Dual-Arm Manipulation

Chapter
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 76)

Abstract

In robotic manipulation systems, a dual-arm configuration is needed for complex operations, like unscrewing a container, and can be useful for load sharing and manipulation of heavy and bulky objects. The potential of dual arm manipulation has recently also been identified for industrial production setups. We discuss how to coordinate such a system using impedance control. A two-arm control law consisting of a set of impedance subsystems is presented. The elasticity in the joints is handled within a singular perturbations based approach. Separate Cartesian impedance controllers for the arms are combined with a compatible coupling impedance. Then, an object level control law for the arms is discussed. The control architecture is briefly discussed. As a non-trivial example, the acquisition of a flat object from a table with grasping points that could not be achieved with a standard twojaw gripper is demonstrated. The robustness of the execution is increased by sliding along the table during the grasping phase.

Keywords

Joint Torque Impedance Control Impedance Behavior Singular Perturbation Theory Rest Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Diftler, M.A., Ambrose, R.O., Goza, S.M., Tyree, K.S., Huber, E.L.: Robonaut mobile autonomy: Initial experiments. In: IEEE International Conference on Robotics and Automation, pp. 1437–1442 (2005)Google Scholar
  2. 2.
    Yokoi, K., Nakashima, K., Kobayashi, M., Mihune, H., Hasunuma, H., Yanagihara, Y., Ueno, T., Gokyuu, T., Endou, K.: A tele-operated humanoid operator. The International Journal of Robotics Research 25(5-6), 593–602 (2006)CrossRefGoogle Scholar
  3. 3.
    Platt Jr., R., Fagg, A.H., Grupen, R.A.: Manipulation gaits: Sequences of grasp control tasks. In: IEEE International Conference on Robotics and Automation, pp. 801–806 (2004)Google Scholar
  4. 4.
    Iwata, H., Hoshino, H., Morita, T., Sugano, S.: Human-humanoid physical interaction realizing force following and task fulfillment. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 522–527 (2000)Google Scholar
  5. 5.
    Chiacchio, P., Chiaverini, S., Siciliano, B.: Direct and inverse kinematics for coordinated motion tasks of a two-manipulator system. ASME Journal of Dynamic Systems, Measurement, and Control 118(4), 691–697 (1996)MATHCrossRefGoogle Scholar
  6. 6.
    Luh, J.Y.S., Zheng, Y.F.: Constrained relations between two coordinated industrial robots for motion control. The International Journal of Robotics Research 6(3), 60–70 (1987)CrossRefGoogle Scholar
  7. 7.
    Uchiyama, M., Dauchez, P.: A symmetric hybrid position/force control scheme for the coordination of two robots. In: IEEE International Conference on Robotics and Automation, vol. 1, pp. 350–356 (April 1988)Google Scholar
  8. 8.
    Nakamura, Y., Nagai, K., Yoshikawa, T.: Mechanics of coordinative manipulation by multiple robotic mechanisms. In: Proceedings of IEEE International Conference on Robotics and Automation, vol. 4, pp. 991–998 (March 1987)Google Scholar
  9. 9.
    Williams, D., Khatib, O.: The virtual linkage: A model for internal forces in multi-grasp manipulation. In: IEEE International Conference on Robotics and Automation, pp. 1025–1030 (1993)Google Scholar
  10. 10.
    Chang, K.S., Holmberg, R., Khatib, O.: The augmented object model: cooperative manipulation and parallel mechanism dynamics. In: IEEE International Conference on Robotics and Automation, vol. 1, pp. 470–475 (2000)Google Scholar
  11. 11.
    Hayati, S.: Hybrid position/force control of multi-arm cooperating robots. In: IEEE International Conference on Robotics and Automation, vol. 3, pp. 82–89 (April 1986)Google Scholar
  12. 12.
    Schneider, S.A., Cannon, J.R.H.: Object impedance control for cooperative manipulation: Theory and experimental results. IEEE Transactions on Robotics and Automation 8(3), 383–394 (1992)CrossRefGoogle Scholar
  13. 13.
    Bonitz, R.G., Hsia, T.C.: Internal force-based impedance control for cooperating manipulators. IEEE Transactions on Robotics and Automation 12, 78–89 (1996)CrossRefGoogle Scholar
  14. 14.
    Hu, Y.-R., Goldenberg, A.A., Zhou, C.: Motion and force control of coordinated robots during constrained motion tasks. The International Journal of Robotics Research 14(4), 351–365 (1995)CrossRefGoogle Scholar
  15. 15.
    Liu, Y.-H., Arimoto, S.: Decentralized Adaptive and Nonadaptive Position/Force Controllers for Redundant Manipulators in Cooperations. The International Journal of Robotics Research 17(3), 232–247 (1998)CrossRefGoogle Scholar
  16. 16.
    Yamano, M., Kim, J.-S., Konno, A., Uchiyama, M.: Cooperative control of a 3d dual-flexible-arm robot. Journal of Intelligent Robotic Systems 39, 1–15 (2004)CrossRefGoogle Scholar
  17. 17.
    Miyabe, T., Konno, A., Uchiyama, M., Yamano, M.: An approach toward an automated object retrieval operation with a two-arm flexible manipulator. The International Journal of Robotics Research 23(3), 275–291 (2004)CrossRefGoogle Scholar
  18. 18.
    Sun, D., Mills, J.K.: Adaptive synchronized control for coordination of multirobot assembly tasks. IEEE Transactions on Robotics and Automation 18(4), 498–510 (2002)CrossRefGoogle Scholar
  19. 19.
    Kokotović, P.V., Khalil, H.K., O’Reilly, J.: Singular Perturbation Methods in Control: Analysis and Design. Academic Press Inc. (1986)Google Scholar
  20. 20.
    Ott, C.: Cartesian impedance control of flexible joint manipulators. Ph.D. dissertation, Saarland University (2005)Google Scholar
  21. 21.
    Pratt, G.A., Williamson, M.M., Dillworth, P., Pratt, J., Ulland, K., Wright, A.: Stiffness isn’t everything. In: Preprints of the Fourth International Symposium on Experimental Robotics, pp. 253–262 (1995)Google Scholar
  22. 22.
    Harville, D.: Matrix Algebra from a Statistician’s Perspective. Springer, Heidelberg (1997)MATHGoogle Scholar
  23. 23.
    Caccavale, F., Natale, C., Siciliano, B., Villani, L.: Six-dof impedance control based on angle/axis representations. IEEE Transactions on Robotics and Automation 15(2), 289–299 (1999)CrossRefGoogle Scholar
  24. 24.
    Natale, C.: Interaction Control of Robot Manipulators: Six-Degrees-of-Freedom Tasks. STAR, vol. 3. Springer, Heidelberg (2003)MATHGoogle Scholar
  25. 25.
    Fasse, E.D., Broenink, J.F.: A spatial impedance controller for robotic manipulation. IEEE Transactions on Robotics and Automation 13(4), 546–556 (1997)CrossRefGoogle Scholar
  26. 26.
    Fasse, E.D.: On the spatial compliance of robotic manipulators. ASME Journal of Dynamic Systems, Measurement, and Control 119, 839–844 (1997)MATHCrossRefGoogle Scholar
  27. 27.
    Zhang, S., Fasse, E.D.: Spatial compliance modeling using a quaternion-based potential function method. Multibody System Dynamics 4, 75–101 (2000)MATHCrossRefGoogle Scholar
  28. 28.
    Stramigioli, S., Duindam, V.: Variable spatial springs for robot control applications. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1906–1911 (2001)Google Scholar
  29. 29.
    Stramigioli, S.: Modeling and IPC Control of Interactive Mechanical Systems: A Coordinate-free Approach. LNCIS, vol. 266. Springer, Heidelberg (2001)MATHGoogle Scholar
  30. 30.
    Rodriguez-Angeles, A., Nijmeijer, H.: Mutual synchronization of robots via estimated state feedback: a cooperative approach. IEEE Transactions on Control Systems Technology 12(4), 542–554 (2004)CrossRefGoogle Scholar
  31. 31.
    Ott, C., Nakamura, Y.: Employing wave variables for coordinated control of robots with distributed control architecture. In: IEEE International Conference on Robotics and Automation, pp. 575–582 (May 2008)Google Scholar
  32. 32.
    Wimböck, T., Ott, C., Hirzinger, G.: Impedance behaviors for two-handed manipulation: Design and experiments. In: IEEE International Conference on Robotics and Automation, pp. 4182–4189 (2007)Google Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institute of Robotics and MechatronicsGerman Aerospace Center (DLR)Oberpfaffenhofen-WesslingGermany

Personalised recommendations