Rule Set Based Joint State Update

  • Thilo Grundmann
  • Michael Fiegert
  • Wolfram Burgard
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 76)


The accurate localization of the objects in the environment is one of the fundamental preconditions for the reliability of service robots. The majority of algorithms for object localization lacks the ability to integrate physical commonsense knowledge into the recognition process especially, when multiple objects are envolved. Consequently the estimates of such methods often do not comply with basic physical constraints such as that rigid objects should not intersect. In this paper, we present an approach for multi-object localization that is able to consider such physical constraints as statistical dependencies in state estimation processes to increase the localization accuracy. Extensive experiments carried out with a real robot in the context of a service robotics scenario demonstrate the practical usefulness of our approach.


Ground Truth Information Gain Joint State Observation Model Calibration Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yaakov, B.-S., Li, X.-R.: Estimation and Tracking: Principles, Techniques and Software. Artech House Publishers, London (1993)zbMATHGoogle Scholar
  2. 2.
    Bohlmann, K., Biber, P., Zell, A.: Using geographical data and sonar to improve gps localization for mobile robots. In: 4th European Conference on Mobile Robots, ECMR (2009)Google Scholar
  3. 3.
    Collet, A., Berenson, D., Srinivasa, S., Ferguson, D.: Object recognition and full pose registration from a single image for robotic manipulation. In: ICRA 2009 (2009)Google Scholar
  4. 4.
    Coumans, E.: Bullet physics engine. Open Source Software (2010),
  5. 5.
    de Chaumont, F., Dufour, A., Olivo-Marin, J.-C.: Tracking articulated objects with physics engines. In: IEEE International Conference on Image Processing, ICIP (2009)Google Scholar
  6. 6.
    de Chaumont, F., Dufour, A., Serreau, P., Chabout, J., Münter, S., Frischknecht, F., Granon, S., Olivo-Marin, J.-C.: Using physics engines to track objects in images. In: ISBI 2009: Proceedings of the Sixth IEEE international Symposium on Biomedical Imaging, Boston (2009)Google Scholar
  7. 7.
    de Chaumont, F., Dallongeville, S., Chenouard, N., Olivo-Marin, J.-C.: Tracking multiple articulated objects using physics engines: Improvement using multi scale decomposition and quadtrees. In: IEEE International Conference on Image Processing, ICIP (2010)Google Scholar
  8. 8.
    Eidenberger, R., Grundmann, T., Zoellner, R.: Probabilistic action planning for active scene modeling in continuous high-dimensional domains. In: IEEE International Conference on Robotics and Automation (ICRA), Kobe, Japan (2009)Google Scholar
  9. 9.
    Eidenberger, R., Scharinger, J.: Active perception and scene modeling by planning with probabilistic 6d object poses. In: Proceedings of the IEEE International Conference on Intelligent Robots and Systems, IROS (2010)Google Scholar
  10. 10.
    Fox, D., Thrun, S., Dellaert, F., Burgard, W.: Particle filters for mobile robot localization. In: Doucet, A., de Freitas, N., Gordon, N. (eds.) Sequential Monte Carlo Methods in Practice, Springer, New York (2000)Google Scholar
  11. 11.
    Grundmann, T., Eidenberger, R., Schneider, M., Fiegert, M.: Robust 6d pose determination in complex environments for one hundred classes. In: Proceedings of the 7th International Conference On Informatics in Control, Automation and Robotics (2010)Google Scholar
  12. 12.
    Kreucher, C., Kastella, K., Hero, A.O.: Multitarget tracking using the joint multitarget probability density. IEEE Transactions on Aerospace and Electronic Systems 41, 1396–1414 (2005)CrossRefGoogle Scholar
  13. 13.
    McArthur, V., Teather, R.J., Stuerzlinger, W.: Comparing 3d content creation interfaces in two virtual worlds: World of warcraft and second life. Journal of Virtual Worlds and Gaming (2010)Google Scholar
  14. 14.
    Rasmussen, C., Hager, G.D.: Probabilistic data association methods for tracking complex visual objects. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(6), 560–576 (2001)CrossRefGoogle Scholar
  15. 15.
    Teather, R.J., Stuerzlinger, W.: Assessing the effects of orientation and device on (constrained) 3d movement techniques. In: IEEE Symposium on 3D User Interfaces 3DUI 2008, pp. 43–50 (2008)Google Scholar
  16. 16.
    Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. MIT Press, Cambridge (2005)zbMATHGoogle Scholar
  17. 17.
    Wichert, G.v., Klimowicz, C., Neubauer, W., Woesch, T., Lawitzky, G., Caspari, R., Heger, H.-J., Witschel, P., Handmann, U., Rinne, M.: The robotic bar - an integrated demonstration of man-robot interaction in a service scenario. In: Proceedings of the 2002 IEEE Int. Workshop, Roman, Berlin (2002)Google Scholar
  18. 18.
    Wagle, N., Correll, N.: Multiple object 3d-mapping using a physics simulator. Technical report, University of Colorado at Boulder (2010)Google Scholar
  19. 19.
    Walter, J.A., Arnrich, B.: Gabor filters for object localization and robot grasping. In: ICPR, pp. 4124–4127 (2000)Google Scholar
  20. 20.
    Zhang, J., Schmidt, R., Knoll, A.: Appearance-based visual learning in a neuro-fuzzy model for fine-positioning of manipulators. In: Proc. of the IEEE Int. Conf. on Robotics & Automation, ICRA (1999)Google Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  • Thilo Grundmann
    • 1
  • Michael Fiegert
    • 1
  • Wolfram Burgard
    • 1
  1. 1.Siemens AGMunichGermany

Personalised recommendations