Combining Resource and Location Awareness in DHTs
Abstract
Distributed hash tables are designed to provide reliable distributed data management, but present challenges for networks in which nodes have varying characteristics such as battery or computing power. Assuming that nodes are aware of their resource availability and relative network positions, this paper presents a novel distributed hash table protocol which uses nodes’ resource levels to remove load from weak nodes, whose overuse may cause delays or failure, while using nodes’ positions to reduce cross-network traffic, which may cause unwanted network load and delays. This protocol provides nodes with links that are physically near with high resource availability, and simultaneously provides scalability and an O(log(N)) routing complexity with N network nodes. Theoretical analysis and simulated evaluation show significant decreases in the routing and maintenance overhead for weak nodes, the physical distances that lookups traverse, and unwanted node failures, as well as an increase node lifetime.
Keywords
Failure Probability Physical Distance Distribute Hash Table Virtual Node Resource LevelPreview
Unable to display preview. Download preview PDF.
References
- 1.Artigas, M.S., Lopez, P.G., Skarmeta, A.F.: A comparative study of hierarchical dht systems. In: Proceedings of the 32nd IEEE Conference on Local Computer Networks, pp. 325–333 (2007)Google Scholar
- 2.Artigas, M., Lopez, P., Ahullo, J., Skarmeta, A.: Cyclone: A novel design schema for hierarchical dhts. In: IEEE P2P 2005, pp. 49–56 (2005)Google Scholar
- 3.Bharambe, A.R., Agrawal, M., Seshan, S.: Mercury: Supporting scalable multi-attribute range queries. In: SIGCOMM 2004, pp. 353–366 (2004)Google Scholar
- 4.Bustamante, F., Qiao, Y.: Friendships that last: Peer lifespan and its role in p2p protocols. In: Douglis, F., Davison, B. (eds.) Web Content Caching and Distribution, pp. 233–246. Springer, Netherlands (2004)CrossRefGoogle Scholar
- 5.Dabek, F., Cox, R., Kaashoek, F., Morris, R.: Vivaldi: A decentralized network coordinate system. In: SIGCOMM 2004, pp. 15–26 (2004)Google Scholar
- 6.Dabek, F., Li, J., Sit, E., Robertson, J., Kaashoek, M.F., Morris, R.: Designing a dht for low latency and high throughput. In: Proceedings of the 1st NSDI, pp. 85–98 (2004)Google Scholar
- 7.El Dick, M., Pacitti, E., Kemme, B.: Flower-cdn: A hybrid p2p overlay for efficient query processing in cdn. In: EDBT 2009, pp. 427–438 (2009)Google Scholar
- 8.Ganesan, P., Bawa, M., Garcia-Molina, H.: Online balancing of range-partitioned data with applications to peer-to-peer systems. In: VLDB 2004, pp. 444–455 (2004)Google Scholar
- 9.Ganesan, P., Gummadi, K., Garcia-Molina, H.: Canon in g major: Designing dhts with hierarchical structure. In: ICDCS 2004, pp. 263–272 (2004)Google Scholar
- 10.Garcés-Erice, L., Biersack, E.W., Felber, P., Ross, K.W., Urvoy-Keller, G.: Hierarchical Peer-to-Peer Systems. In: Kosch, H., Böszörményi, L., Hellwagner, H. (eds.) Euro-Par 2003. LNCS, vol. 2790, pp. 1230–1239. Springer, Heidelberg (2003)CrossRefGoogle Scholar
- 11.Godfrey, P.B., Stoica, I.: Heterogeneity and load balance in distributed hash tables. In: IEEE INFOCOM, pp. 596–606 (2005)Google Scholar
- 12.Gummadi, K., Gummadi, R., Gribble, S., Ratnasamy, S., Shenker, S., Stoica, I.: The impact of dht routing geometry on resilience and proximity. In: SIGCOMM 2003, pp. 381–394 (2003)Google Scholar
- 13.Baumgart, I., Heep, B., Krause, S.: Oversim: A scalable and flexible overlay framework for simulation and real network applications. In: IEEE P2P (2009), http://www.oversim.org/wiki
- 14.Karger, D.R., Lehman, E., Leighton, F.T., Panigrahy, R., Levine, M.S., Lewin, D.: Consistent hashing and random trees: Distributed caching protocols for relieving hot spots on the world wide web. In: STOC, pp. 654–663 (1997)Google Scholar
- 15.Karger, D.R., Ruhl, M.: Simple efficient load balancing algorithms for peer-to-peer systems. In: SPAA 2004, pp. 36–43 (2004)Google Scholar
- 16.Maniymaran, B., Bertier, M., Kermarrec, A.-M.: Build one, get one free: Leveraging the coexistence of multiple p2p overlay networks. In: ICDCS 2007, pp. 33–33 (June 2007)Google Scholar
- 17.Maymounkov, P., Mazières, D.: Kademlia: A Peer-to-Peer Information System Based on the Xor Metric. In: Druschel, P., Kaashoek, M.F., Rowstron, A. (eds.) IPTPS 2002. LNCS, vol. 2429, pp. 53–65. Springer, Heidelberg (2002)CrossRefGoogle Scholar
- 18.Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content addressable network. In: SIGCOMM 2001 (2001)Google Scholar
- 19.Ren, S., Guo, L., Jiang, S., Zhang, X.: Sat-match: A self-adaptive topology matching method to achieve low lookup latency in structured p2p overlay networks. In: IPDPS 2004, pp. 83–91 (April 2004)Google Scholar
- 20.Saroiu, S., Gummadi, P.K., Gribble, S.D.: A measurement study of peer-to-peer file sharing systems. In: Proceedings of the Multimedia Computing and Networking (2002)Google Scholar
- 21.Stoica, I., Morris, R., Karger, D., Kaashoek, M., Balakrishnan, H.: Chord: A scalable peer-to-peer lookup service for internet applications. In: SIGCOMM 2001, pp. 149–160 (2001)Google Scholar
- 22.Waldvogel, M., Rinaldi, R.: Efficient topology-aware overlay network. SIGCOMM Comput. Commun. Rev. 33, 101–106 (2003)CrossRefGoogle Scholar
- 23.Xu, Z., Min, R., Hu, Y.: Hieras: A dht based hierarchical p2p routing algorithm. In: ICPP 2003, pp. 187–194 (2003)Google Scholar
- 24.Zhao, B.Y., Kubiatowicz, J.D., Joseph, A.D.: Tapestry: An infrastructure for fault-tolerant wide-are location and routing. Tech. Rep. UCB/CSD-01-1141, UC Berkeley (2001)Google Scholar
- 25.Zoels, S., Despotovic, Z., Kellerer, W.: Cost-based analysis of hierarchical dht design. In: IEEE P2P 2006, pp. 233–239 (2006)Google Scholar