A Case Retrieval Approach Using Similarity and Association Knowledge

  • Yong-Bin Kang
  • Shonali Krishnaswamy
  • Arkady Zaslavsky
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7044)

Abstract

Retrieval is often considered the most important phase in Case-Based Reasoning (CBR), since it lays the foundation for overall performance of CBR systems. Retrieval in CBR aims to retrieve relevant cases that can be successfully used for solving a new problem. To realize retrieval, CBR systems typically rely on a strategy that exploits similarity knowledge, and it is called similarity-based retrieval (SBR). In SBR, similarity knowledge approximates the usefulness of cases for solving a new problem. In this paper, we show that association analysis of stored cases can be used to strengthen SBR. We present a new approach for extracting and representing association knowledge from the cases using association rule mining. We propose a novel retrieval strategy USIMSCAR that qualitatively enhances SBR by leveraging both similarity and association knowledge. We demonstrate the significant advantages of using USIMSCAR over SBR through an experimental evaluation using medical datasets.

Keywords

Breast Cancer Breast Tissue Association Rule Majority Vote Association Rule Mining 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aamodt, A., Plaza, E.: Case-based reasoning: Foundational issues, methodological variations, and system approaches. AI Communications 7, 39–59 (1994)Google Scholar
  2. 2.
    Ahn, H., Kim, K.-j.: Global optimization of case-based reasoning for breast cytology diagnosis. Expert Syst. Appl. 36, 724–734 (2009)CrossRefGoogle Scholar
  3. 3.
    Kang, Y.-B., Zaslavsky, A., Krishnaswamy, S., Bartolini, C.: A knowledge-rich similarity measure for improving it incident resolution process. In: Proceedings of the 2010 ACM SAC, pp. 1781–1788. ACM (2010)Google Scholar
  4. 4.
    Bradley, K., Smyth, B.: Personalized information ordering: a case study in online recruitment. Knowledge-Based Systems 16, 269–275 (2003)CrossRefMATHGoogle Scholar
  5. 5.
    Nilsson, M., Funk, P., Sollenborn, M.: Complex Measurement Classification in Medical Applications Using a Case-Based Approach. In: Ashley, K.D., Bridge, D.G. (eds.) ICCBR 2003. LNCS, vol. 2689, pp. 63–73. Springer, Heidelberg (2003)Google Scholar
  6. 6.
    De Mantaras, R.L., McSherry, D., Bridge, D., Leake, D., Smyth, B., Craw, S., Faltings, B., Maher, M.L., Cox, M.T., Forbus, K., Keane, M., Aamodt, A., Watson, I.: Retrieval, reuse, revision and retention in case-based reasoning. Knowl. Eng. Rev. 20, 215–240 (2005)CrossRefGoogle Scholar
  7. 7.
    Smyth, B., Keane, M.T.: Adaptation-guided retrieval: questioning the similarity assumption in reasoning. Artif. Intell. 102, 249–293 (1998)CrossRefMATHGoogle Scholar
  8. 8.
    Stahl, A.: Learning of knowledge-intensive similarity measures in case-based reasoning. PhD thesis. Technical University of Kaiserslautern (2003)Google Scholar
  9. 9.
    Cercone, N., An, A., Chan, C.: Rule-induction and case-based reasoning: hybrid architectures appear advantageous. IEEE Trans. on Know. and Data Eng. 11, 166–174 (1999)CrossRefGoogle Scholar
  10. 10.
    Park, Y.J., Kim, B.C., Chun, S.H.: New knowledge extraction technique using probability for case-based reasoning: application to medical diagnosis. Expert Systems 23, 2–20 (2006)CrossRefGoogle Scholar
  11. 11.
    Aamodt, A.: Knowledge-intensive case-based reasoning in CREEK. In: Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155, pp. 1–15. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Hoffmann, A., Khan, A.S.: A new approach for the incremental development of retrieval functions for CBR. Applied Artificial Intelligence 20, 507–542 (2006)CrossRefGoogle Scholar
  13. 13.
    Castro, J.L., Navarro, M., Sánchez, J.M., Zurita, J.M.: Loss and gain functions for CBR retrieval. Inf. Sci. 179, 1738–1750 (2009)CrossRefGoogle Scholar
  14. 14.
    Cunningham, P.: A Taxonomy of Similarity Mechanisms for Case-Based Reasoning. IEEE Trans. on Knowl. and Data Eng. 21, 1532–1543 (2009)CrossRefGoogle Scholar
  15. 15.
    Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of items in large databases. In: SIGMOD 1993, pp. 207–216. ACM (1993)Google Scholar
  16. 16.
    Liu, B., Hsu, W., Ma, Y.: Integrating classification and association rule mining. In: Proceedings of the 4th KDD, pp. 443–447 (1998)Google Scholar
  17. 17.
    Nahm, U.Y., Mooney, R.J.: Mining soft-matching association rules. In: Proceedings of CIKM 2002, pp. 681–683 (2002)Google Scholar
  18. 18.
    Geng, L., Hamilton, H.J.: Interestingness measures for data mining: A survey. ACM Comput. Surv. 38, 9 (2006)CrossRefGoogle Scholar
  19. 19.
    Hu, T., Sung, S.Y., Xiong, H., Fu, Q.: Discovery of maximum length frequent itemsets. Inf. Sci. 178, 69–87 (2008)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Jurisica, I., Glasgow, J.: Case-Based Classification Using Similarity-Based Retrieval. In: International Conference on Tools with Artificial Intelligence, p. 410 (1996)Google Scholar
  21. 21.
    Witten, I.H., Frank, E.: Data mining: Practical machine learning tools and techniques with Java implementations. Morgan Kaufmann, San Francisco (2000)Google Scholar
  22. 22.
    Richard, C.S.: Basic Statistical Analysis. Allyn & Bacon (2003)Google Scholar
  23. 23.
    Keen, E.M.: Presenting results of experimental retrieval comparisons. Inf. Process. Manage. 28, 491–502 (1992)CrossRefGoogle Scholar
  24. 24.
    Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003)MATHGoogle Scholar
  25. 25.
    Park, J.H., Im, K.H., Shin, C.K., Park, S.C.: MBNR: Case-Based Reasoning with Local Feature Weighting by Neural Network: Special Issue: Soft Computing in Case Based Reasoning. Applied Intelligence 21, 265–276 (2004)CrossRefMATHGoogle Scholar
  26. 26.
    Auriol, E., Wess, S., Manago, M., Althoff, K.-D., Traphöner, R.: INRECA: A Seamlessly Integrated System Based on Inductive Inference and Case-Based Reasoning. In: Aamodt, A., Veloso, M.M. (eds.) ICCBR 1995. LNCS, vol. 1010, pp. 371–380. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  27. 27.
    Bergmann, R., Stahl, A.: Similarity measures for object-oriented case representations. In: Smyth, B., Cunningham, P. (eds.) EWCBR 1998. LNCS (LNAI), vol. 1488, pp. 25–36. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  28. 28.
    Kuba, P., Popelinsky, L.: Mining frequent patterns in object-oriented data. Technical Report, Masaryk University, Czech Republic (2005)Google Scholar
  29. 29.
    Pater, S.M., Popescu, D.E.: Market-Basket Problem Solved With Depth First Multi-Level Apriori Mining Algorithm. In: SOFA 2009. 3rd International Workshop on Soft Computing Applications, pp. 133–138 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Yong-Bin Kang
    • 1
  • Shonali Krishnaswamy
    • 1
  • Arkady Zaslavsky
    • 1
    • 2
  1. 1.Faculty of ITMonash UniversityAustralia
  2. 2.ICT CentreCSIROAustralia

Personalised recommendations