ADERIS: An Adaptive Query Processor for Joining Federated SPARQL Endpoints

  • Steven Lynden
  • Isao Kojima
  • Akiyoshi Matono
  • Yusuke Tanimura
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7045)

Abstract

Integrating distributed RDF data is facilitated by Linked Data and shared ontologies, however joins over distributed SPARQL services can be costly, time consuming operations. This paper describes the design and implementation of ADERIS, a query processing system for efficiently joining data from multiple distributed SPARQL endpoints. ADERIS decomposes federated SPARQL queries into multiple source queries and integrates the results utilising two techniques: adaptive join reordering, for which a cost model is defined, and the optimisation of subsequent queries to data sources to retrieve further data. The benefit of the approach in terms of minimising response time is illustrated by sample queries containing common SPARQL join patterns.

Keywords

Query Processing Query Execution SPARQL Query Query Plan Triple Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Linked Data - Connect Distributed Data across the Web, http://linkeddata.org/
  2. 2.
    SPARQL 1.1 Federation Extensions, http://www.w3.org/2009/sparql/docs/fed/gen.html
  3. 3.
    Deshpande, A., Ives, Z.G., Raman, V.: Adaptive query processing. Foundations and Trends in Databases 1(1), 1–140 (2007)CrossRefMATHGoogle Scholar
  4. 4.
    Lynden, S., Kojima, I., Matono, A., Tanimura, Y.: Adaptive Integration of Distributed Semantic Web Data. In: Kikuchi, S., Sachdeva, S., Bhalla, S. (eds.) DNIS 2010. LNCS, vol. 5999, pp. 174–193. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Gounaris, A., Yfoulis, C., Sakellariou, R., Dikaiakos, M.D.: A control theoretical approach to self-optimizing block transfer in web service grids. TAAS 3(2) (2008)Google Scholar
  6. 6.
    ARQ SPARQL query processing framework, http://jena.sourceforge.net/ARQ/
  7. 7.
    Carroll, J.J., Dickinson, I., Dollin, C., Seaborne, A., Wilkinson, K., Reynolds, D., Reynolds, D.: Jena: Implementing the semantic web recommendations. Technical Report HPL-2003-146, Hewlett Packard Laboratories (2004)Google Scholar
  8. 8.
    Buil-Aranda, C., Arenas, M., Corcho, O.: Semantics and Optimization of the SPARQL 1.1 Federation Extension. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC 2011. LNCS, vol. 6644, pp. 1–15. Springer, Heidelberg (2011)Google Scholar
  9. 9.
    Quilitz, B., Leser, U.: Querying Distributed RDF Data Sources with SPARQL. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 524–538. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Langegger, A., Wöß, W., Blöchl, M.: A Semantic Web Middleware for Virtual Data Integration on the Web. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 493–507. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Describing Linked Datasets with the VoID Vocabulary (W3C Interest Group Note March 03, 2011), http://www.w3.org/TR/void/
  12. 12.
    Tanimura, Y., Matono, A., Kojima, I., Sekiguchi, S.: Storage Scheme for Parallel RDF Database Processing Using Distributed File System and MapReduce. In: International Conference on High Performance Computing in the Asia Pacific Region (2009)Google Scholar
  13. 13.
    Abadi, D.J., Marcus, A., Madden, S., Hollenbach, K.: SW-Store: a vertically partitioned DBMS for Semantic Web data management. VLDB J. 18(2), 385–406 (2009)CrossRefGoogle Scholar
  14. 14.
    Li, Q., Sha, M., Markl, V., Beyer, K., Colby, L., Lohman, G.: Adaptively Reordering Joins during Query Execution. In: Proc. ICDE, pp. 26–35. IEEE Computer Society, Los Alamitos (2007)Google Scholar
  15. 15.
    Elsayed, I., Brezany, P.: Towards Large-Scale Scientific Dataspaces for e-Science Applications. In: Yoshikawa, M., Meng, X., Yumoto, T., Ma, Q., Sun, L., Watanabe, C. (eds.) DASFAA 2010. LNCS, vol. 6193, pp. 69–80. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Graefe, G.: Query evaluation techniques for large databases. ACM Comput. Surv. 25(2), 73–170 (1993)CrossRefGoogle Scholar
  17. 17.
    Haas, L.M., Kossmann, D., Wimmers, E.L., Yang, J.: Optimizing queries across diverse data sources. In: 23rd Int. Conference on Very Large Data Bases, VLDB (1997)Google Scholar
  18. 18.
    Garcia-Molina, H., Widom, J., Ullman, J.D.: Database System Implementation. Prentice-Hall, Inc., Upper Saddle River (1999)Google Scholar
  19. 19.
    Astrom, K.J., Wittenmark, B.: Adaptive Control. Addison-Wesley (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Steven Lynden
    • 1
  • Isao Kojima
    • 1
  • Akiyoshi Matono
    • 1
  • Yusuke Tanimura
    • 1
  1. 1.Information Technology Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan

Personalised recommendations