Advertisement

Diffusive Limit of a MEP Hydrodynamical Model Obtained from the Bloch-Boltzmann-Peierls Equations for Semiconductors

  • Giuseppe Alì
  • Vittorio Romano
  • Nella Rotundo
Conference paper
Part of the Mathematics in Industry book series (MATHINDUSTRY, volume 17)

Abstract

We consider a MEP hydrodynamical model obtained from a set of transport equations for the distribution functions of electrons in conduction band and phonon. We assume that the MEP model contains equations for the electron density fluxes and energy fluxes, and for the phonons energy fluxes. For this system we introduce a small parameter, related to the transition probabilities in the collision terms, and a diffusive scaling at the level of the Lagrangian multipliers appearing in the closure relations. In the diffusive limit, as the small parameter tends to zero, we obtain a model that can be physically interpreted in the framework of linear irreversible thermodynamics.

Keywords

Small Parameter Diffusive Limit Moment Equation Macroscopic Model Collision Term 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anile, A.M., Marrocco, A., Romano, V., Sellier, J.M.: Numerical simulation of 2D Silicon MESFET and MOSFET described by the MEP based energy-transport model with a mixed finite elements scheme, Rapport de Recherche INRIA No. 5095 (2004)Google Scholar
  2. 2.
    Degond, P., Génieys, S., Jüngel, A., A steady-state system in non-equilibrium thermodynamics including thermal and electrical effects. Math. Meth. Appl. Sci. 21(15), 1399–1413 (1998)Google Scholar
  3. 3.
    Dreyer, W., Struchtrup, H.: Heat pulse experiment revisited. Continuum Mech. Thermodyn. 5, 3–50 (1993)Google Scholar
  4. 4.
    Galler, M., Schürrer, F.: A deterministic solution method for the coupled system of transport equations for the electrons and phonons in polar semiconductors. J. Phys. A Math Gen. 37, 1479–1497 (2004)Google Scholar
  5. 5.
    Romano, V., Rusakov, A.: 2D numerical simulations of an electron-phonon hydrodynamical model based on the maximum entropy principle, Comput. Meth. Appl. Mech. Eng. 199, 2741–2751 (2010)Google Scholar
  6. 6.
    Romano, V., Zwierz, M.: Electron-phonon hydrodynamical model for semiconductors, Z. Angew. Math. Phys. 61 1111–1131 (2010)Google Scholar
  7. 7.
    Selberherr, S.: Analysis and Simulation of Semiconductor Devices. Springer, Berlin (1984)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Giuseppe Alì
    • 1
    • 2
  • Vittorio Romano
    • 3
  • Nella Rotundo
    • 2
    • 3
  1. 1.Departimento di MatematicaUniversità della CalabriaCosenzaItaly
  2. 2.INFN, Gruppo collegato di CosenzaCosenzaItaly
  3. 3.Dipartimento di Matematica e InformaticaUniversità di CataniaCataniaItaly

Personalised recommendations