Estimators of the Intensity of Fibre Processes and Applications

  • Paola M. V. Rancoita
  • Alessandra Micheletti
Conference paper
Part of the Mathematics in Industry book series (MATHINDUSTRY, volume 17)


Many objects in the real world can be modeled as fibres (i.e. lines in 2D or 3D space). If the process is invariant under translations, one of its characteristics is the mean length per unit area (called intensity). Under suitable conditions, two estimators of the intensity have been shown to be asymptotically normal when the sample is “enriched” by enlarging the window of observation. We discuss the applicability of these estimators in practice, by using both simulated and real images of fibre processes.


Intersection Point Asymptotic Normality Unbiased Estimator Real Image Simulated Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beněs, V., Rataj, J.: Stochastic Geometry: Selected Topics. Boston Kluwer Academic Publishers, Dordrecht (2004)Google Scholar
  2. 2.
    Dierckx, P.: Curve and Surface Fitting with Splines. Oxford University Press Inc., New York (1996)Google Scholar
  3. 3.
    Micheletti, A., Rancoita, P.M.V.: Estimators of the intensity of stationary planar fibre processes. In: Capasso, V., Micheletti, A., Aletti, G. (eds.) Stereology and Image Analysis. Ecs10 - Proceedings of the 10th European Congress of ISS, The MIRIAM Project Series, pp. 131–136. ESCULAPIO Pub. Co., Bologna, Italy (2009)Google Scholar
  4. 4.
    Ohser, J.: A remark on the estimation of the rose directions of fibre processes. Mathematische Operationsforschung und Statistik. Ser. Stat. 12, 581–585 (1981)Google Scholar
  5. 5.
    Rancoita, P.M.V.: Statistics of fibre processes. Applications to angiogenesis. MSc thesis, Università degli Studi di Milano (2006); In Italian.Google Scholar
  6. 6.
    Rancoita, P.M.V.: Stochastic methods in cancer research. Applications to genomics and angiogenesis. Ph.D. thesis, Università degli Studi di Milano (2010)Google Scholar
  7. 7.
    Soille, P.: Morphological Image Analysis. Principles and Applications. Springer, Berlin, Heidelberg, New York (1999)Google Scholar
  8. 8.
    Stoyan, D., Kendall, W.S., Mecke, J.: Stochastic Geometry and its Applications. (2nd eds). Wiley, Chichester, New York, Brisbane, Toronto, Singapore (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Paola M. V. Rancoita
    • 1
    • 2
  • Alessandra Micheletti
    • 3
  1. 1.Istituto Dalle Molle di Studi sull’Intelligenza ArtificialeManno-LuganoSwitzerland
  2. 2.Laboratory of Experimental OncologyOncology Institute of Southern SwitzerlandBellinzonaSwitzerland
  3. 3.Dipartimento di MatematicaUniversità degli Studi di MilanoMilanoItaly

Personalised recommendations