Stochastic PDAE-Model and Associated Monte-Carlo Simulations for Elastic Threads in Turbulent Flows

  • Nicole Marheineke
  • Raimund Wegener
Conference paper
Part of the Mathematics in Industry book series (MATHINDUSTRY, volume 17)


Considering the motion of a long slender elastic thread in turbulent flows, a stochastic aerodynamic drag force concept was derived for a one-way coupling on top of a k-ε turbulence description in Marheineke and Wegener (SIAM J. Appl. Math. 66:1703–1726, 2006). In this paper we present a generalization of this concept that allows the simulation of practically relevant fluid-solid interactions and yields very convincing results in comparison to experiments. Thereby, it reduces the complex problem to two surrogate models: a universally valid drag model for all Reynolds number regimes and incident flow directions and a turbulence correlation model.


Circular Cylinder Direct Numerical Simulation Aerodynamic Force Stochastic Partial Differential Equation Line Force 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Antman, S.S.: Nonlinear Problems of Elasticity. Springer, New York (2004)Google Scholar
  2. 2.
    Frisch, U.: Turbulence. The Legacy of A. N. Kolmogorov. Cambridge University Press, Cambridge (1995)zbMATHGoogle Scholar
  3. 3.
    Hoerner, S.F.: Fluid-dynamic drag. Practical information on aerodynamic drag and hydrodynamic resistance. Published by the author. Obtainable from ISVA (1965)Google Scholar
  4. 4.
    Klar, A., Marheineke, N., Wegener, R.: Hierarchy of mathematical models for production processes of technical details. ZAMM 89, 941–961 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Marheineke, N., Wegener, R.: Fiber dynamics in turbulent flows: General modeling framework. SIAM J. Appl. Math. 66(5), 1703–1726 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Marheineke, N., Wegener, R.: Modeling and application of a stochastic drag for fibers in turbulent flows. Int. J. Multiphas. Flow. 37(2), 136–148 (2011)CrossRefGoogle Scholar
  7. 7.
    Schlichting, H.: Grenzschicht-Theorie. Verlag G. Braun, Karlsruhe (1982)zbMATHGoogle Scholar
  8. 8.
    Sumer, B.M., Fredsoe, J.: Hydrodynamics around cylindrical structures. World Scientific Publishing, London (2006)zbMATHCrossRefGoogle Scholar
  9. 9.
    Zdravkovich, M.M.: Flow around circular cylinders, Vol 1: Fundamentals. Oxford University Press, New York (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department MathematikFAU Erlangen-NürnbergErlangenGermany
  2. 2.Fraunhofer-Institut für Techno- und Wirtschaftsmathematik (ITWM)KaiserslauternGermany

Personalised recommendations