Skip to main content

Stationary Solutions of Some Nonlinear Black–Scholes Type Equations Arising in Option Pricing

  • 1597 Accesses

Part of the Mathematics in Industry book series (TECMI,volume 17)

Abstract

Black–Scholes equation has been widely used by academicians and practitioners. In the classical model, transaction costs are not considered and volatility is assumed to be constant, which is not consistent with practice.

Having the works of Leland (J. Finance 40:1283–1301, 1985) and Avellaneda et al. (Int. J. Theor. Appl. Finance 1:289–310, 1998) in view, we present two results that contribute to the mathematical study of the above questions. We prove the existence of stationary solutions of nonlinear versions of the standard parabolic Black–Scholes PDE, following the framework of Amster et al. (J. Math. Anal. Appl. 276:231–238, 2002; J. Math. Anal. Appl. 303:688–695, 2005), and using the upper and lower solutions method.

Keywords

  • Transaction Cost
  • Option Price
  • Stochastic Volatility Model
  • Option Price Model
  • Scholes Model

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amster, P., Averbuj, C.G., Mariani, M.C.: Solutions to a stationary nonlinear Black–Scholes type equation. J. Math. Anal. Appl. 276, 231–238 (2002)

    CrossRef  MathSciNet  MATH  Google Scholar 

  2. Amster, P., Averbuj, C.G., Mariani, M.C., Rial, D.: A Black-Scholes option pricing model with transaction costs. J. Math. Anal. Appl., 303, 688-695 (2005)

    CrossRef  MathSciNet  MATH  Google Scholar 

  3. Avellaneda, M., Zhu, Y.: Risk neutral stochastic volatility model. Internat. J. Theor. Appl. Finance, 1, 289–310 (1998)

    CrossRef  MATH  Google Scholar 

  4. De Coster, C., Habets, P.: Two-Point Boundary Value Problems Lower and Upper Solutions. Elsevier (2006)

    Google Scholar 

  5. Fabião, F., Grossinho, M.R., Simões, O.: Positive solutions of a Dirichlet problem for a stationary nonlinear Black-Scholes equation. Nonlinear Anal. Theor. Meth. Appl. 71, 4624–4631 (2009)

    CrossRef  MATH  Google Scholar 

  6. Grossinho, M.R., Morais, E.: A note on a stationary problem for a Black-Scholes equation with transaction costs. Int. J. of Pure and Appl. Math. 51, 579–587 (2009)

    MathSciNet  MATH  Google Scholar 

  7. Kim, S.: Hedging option portfolios with transaction costs and bandwidth. J. KSIAM 14(2), 77–84 (2000)

    Google Scholar 

  8. Leland, H.E.: Option pricing and replication with transaction costs. J. Finance 40, 1283–1301 (1985)

    CrossRef  Google Scholar 

  9. Mawhin, J.: Points fixes, points critiques et problèmes aux limites. Séminaire de Mathématiques Supérieures, 92. Presses de l’Université de Montréal, Montreal, QC (1985)

    Google Scholar 

  10. Wilmott, P., Howison, S., Dewynne, J.: The mathematics of financial derivatives. A student Introduction, Cambridge University press, Cambridge (1995)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria do Rosário Grossinho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

de Fátima Fabião, M., do Rosário Grossinho, M., Morais, E., Simões, O.A. (2012). Stationary Solutions of Some Nonlinear Black–Scholes Type Equations Arising in Option Pricing. In: Günther, M., Bartel, A., Brunk, M., Schöps, S., Striebel, M. (eds) Progress in Industrial Mathematics at ECMI 2010. Mathematics in Industry(), vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25100-9_26

Download citation