Model Order Reduction of Nonlinear Systems By Interpolating Input-Output Behavior

  • Michael Striebel
  • Joost Rommes
Conference paper
Part of the Mathematics in Industry book series (MATHINDUSTRY, volume 17)


In this paper we propose a new approach for model order reduction of parameterized nonlinear systems. Instead of projecting onto the dominant state space, an analog macromodel is constructed for the dominant input-output behavior. This macromodel is suitable for (re)use in analog circuit simulators. The performance of the approach is illustrated for a benchmark nonlinear system.


Proper Orthogonal Decomposition Model Order Reduction Lower Dimensional Subspace Nonlinear Circuit Numerical Time Integration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Antoulas, A.C.: Approximation of Large-Scale Dynamical Systems. SIAM, Philadelphia (2005)zbMATHCrossRefGoogle Scholar
  2. 2.
    Bourenkov, V., McCarthy, K., Mathewson, A.: MOS table models for circuit simulation. IEEE Trans. Comp.-Aided Des. Integrated Circ. Syst. 24(3), 352–362 (2005). doi:10.1109/ TCAD.2004.842818CrossRefGoogle Scholar
  3. 3.
    Chaturantabut, S., Sorensen, D.C.: Nonlinear model reduction via discrete empirical interpolation. SIAM J. Sci. Comput. 32(5), 2737–2764 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Meijer, P.: Fast and smooth highly nonlinear multidimensional table models for device modelling. IEEE Trans. Circ. Syst. 37(3), 335–346 (1990)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Rewieński, M.J., White, J.: A trajectory piecewise-linear approach to model order reduction and fast simulation of nonlinear circuits and micromachined devices. IEEE Trans. CAD Int. Circ. Syst. 22(2), 155–170 (2003)CrossRefGoogle Scholar
  6. 6.
    Roos, J., Valtonen, M.: An efficient piecewise-linear dc analysis method for general non-linear circuits. Int. J. Circ. Theor. Appl. 27, 311–330 (1999)CrossRefGoogle Scholar
  7. 7.
    Striebel, M., Rommes, J.: Model order reduction of nonlinear systems: Status, open issues, and applications. Tech. Rep. CSC/08-07, Technische Universität Chemnitz (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Bergische Universität WuppertalWuppertalGermany
  2. 2.NXP SemiconductorsEindhovenThe Netherlands

Personalised recommendations