Modelling and Analysis of the Nonlinear Dynamics of the Transrapid and Its Guideway

  • Michael Dellnitz
  • Florian Dignath
  • Kathrin Flaßkamp
  • Mirko Hessel-von Molo
  • Martin Krüger
  • Robert Timmermann
  • Qinghua Zheng
Conference paper
Part of the Mathematics in Industry book series (MATHINDUSTRY, volume 17)

Abstract

In the development and optimization of magnetic levitation trains, realistic simulation models of the mechanic, electromagnetic and electronic subsystems both onboard and in the guideway are crucial factors. In this contribution we present coupled mechanical-electromagnetic models of the control subsystems, magnet subsystems, a lateral cross-section and a vertical dynamics model, modeled by the multibody systems method. The models are verified using simulations, eigenmode analysis and displacement measurements from train passages on a test track. The models are suitable e.g. for simulating the effects of train passages on the ground and they are applied to the analysis of a novel guideway support. It is shown that ground vibrations caused by the vehicle can be significantly reduced by a flexible spring-mass system as support for the girders.

Keywords

Ground Vibration Bode Diagram Maglev Vehicle Guidance Magnet Mechanical Subsystem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Flaßkamp, K.: Analyse der nichtlinear gekoppelten Lateraldynamik der Magnetschwebebahn Transrapid (Analysis of the nonlinearly coupled lateral dynamics of the maglev train Transrapid, in German). Diploma thesis, University of Paderborn (2008)Google Scholar
  2. 2.
    Gottzein, E.: Das Magnetische Rad als autonome Funktionseinheit modularer Trag- und Führsysteme für Magnetbahnen. No. 35 in VDI–Fortschritt-Berichte, Reihe 8. VDI, Düsseldorf (1984)Google Scholar
  3. 3.
    Hägele, N., Dignath, F.: Vertical dynamics of the Maglev vehicle Transrapid. Multibody Syst. Dyn. 21, 213–231 (2009)Google Scholar
  4. 4.
    Kreuzer, E., Leister, G.: Programmsystem NEWEUL’90. Institute B of Mechanics, University of Stuttgart (1991). AN–24Google Scholar
  5. 5.
    Krüger, M.: Vertikaldynamik der Magnetschwebebahn Transrapid unter Berücksichtigung der nichtlinearen Magnetcharakteristik (Vertical dynamics of the maglev train Transrapid under consideration of the nonlinear magnet characteristics, in German). Diploma thesis, University of Paderborn (2008)Google Scholar
  6. 6.
    Meisinger, R.: Beiträge zur Regelung einer Magnetschwebebahn auf elastischem Fahrweg. Ph.D. thesis, Fachbereich für Maschinenwesen, Technical University of Munich (1977)Google Scholar
  7. 7.
    Miller, L.: Transrapid, Innovation für den Hochgeschwindigkeitsverkehr. Bayerischer Monatsspiegel (4), 34–45 (1998)Google Scholar
  8. 8.
    Popp, K.: Beiträge zur Dynamik von Magnetschwebefahrzeugen auf geständerten Fahrwegen. No. 35 in VDI–Fortschritt-Berichte, Reihe 12. VDI Verlag, Düsseldorf (1978)Google Scholar
  9. 9.
    Raschbichler, H.G.: Entwicklungslinie Magnetschnellbahn Transrapid. In: Rausch, K.F., Rießberger, K., Schaber, H. (eds.) Sonderheft Transrapid, ZEVrail, Glasers Annalen, vol. 127, pp. 10–16. Georg Siemens Verlag, Berlin (2003)Google Scholar
  10. 10.
    Rausch, K.F., Rießberger, K., Schaber, H. (eds.): Sonderheft Transrapid, ZEVrail, Glasers Annalen, vol. 127. Georg Siemens Verlag, Berlin (2003)Google Scholar
  11. 11.
    Schach, R., Jehle, P., Naumann, R.: Transrapid und Rad–Schiene–Hochgeschwindigkeitsbahn. Springer, Berlin (2006)Google Scholar
  12. 12.
    Timmermann, R.: Analytische und experimentelle Untersuchung der Tragmagnetregelung des Transrapid im nichtlinearen Arbeitsbereich (Analytical and experimental analysis of the Transrapid’s levitation magnet controller in its nonlinear working range, in German). Diploma thesis, University of Paderborn (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Michael Dellnitz
    • 1
  • Florian Dignath
    • 3
  • Kathrin Flaßkamp
    • 1
  • Mirko Hessel-von Molo
    • 1
  • Martin Krüger
    • 2
  • Robert Timmermann
    • 1
  • Qinghua Zheng
    • 3
  1. 1.Chair of Applied MathematicsUniversity of PaderbornPaderbornGermany
  2. 2.Heinz Nixdorf InstituteUniversity of PaderbornPaderbornGermany
  3. 3.ThyssenKrupp TransrapidMunichGermany

Personalised recommendations