Injury Assessment for Physics-Based Characters

  • Thomas Geijtenbeek
  • Diana Vasilescu
  • Arjan Egges
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7060)


Determining injury levels for virtual characters is an important aspect of many games. For characters that are animated using simulated physics, it is possible assess injury levels based on physical properties, such as accelerations and forces. We have constructed a model for injury assessment that relates results from research on human injury response to parameters in physics-based animation systems. We describe a set of different normalized injury measures for individual body parts, which can be combined into a single measure for total injury. Our research includes a user study in which human observers rate the injury levels of physics-based characters falling from varying heights at different orientations. Results show that the correlation between our model output and perceived injury is stronger than the correlation between perceived injury and fall height (0.603 versus 0.466, respectively, with N = 1020 and p < 0.001).


Injury Severity Score User Study Abbreviate Injury Scale Virtual Character Injury Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hertzmann, A., Zordan, V.: Physics-Based Characters. Computer Graphics and Applications 31(4), 20–21 (2011)CrossRefGoogle Scholar
  2. 2.
    Coros, S., Beaudoin, P., van de Panne, M.: Generalized biped walking control. ACM Transactions on Graphics (SIGGRAPH) 29, 1–9 (2010)CrossRefGoogle Scholar
  3. 3.
    Muico, U., Lee, Y., Popović, J., Popović, Z.: Contact-aware nonlinear control of dynamic characters. ACM Transactions on Graphics (SIGGRAPH) 28(3), 1–9 (2009)CrossRefGoogle Scholar
  4. 4.
    Wu, J.-c., Popovic, Z.: Terrain-Adaptive Bipedal Locomotion Control. ACM Transactions on Graphics (SIGGRAPH) 29(4), 1–10 (2010)CrossRefGoogle Scholar
  5. 5.
    Mordatch, I., de Lasa, M., Hertzmann, A.: Robust Physics-Based Locomotion Using Low-Dimensional Planning. ACM Transactions on Graphics (SIGGRAPH) 29(4), 1–8 (2010)CrossRefGoogle Scholar
  6. 6.
    Geijtenbeek, T., Pronost, N., Egges, A., Overmars, M.H.: Interactive Character Animation using Simulated Physics. In: Eurographics (State-of-the-Art Reports) (2011)Google Scholar
  7. 7.
    Faloutsos, P.: The virtual stuntman: dynamic characters with a repertoire of autonomous motor skills. Computers & Graphics 25(6), 933–953 (2001)CrossRefGoogle Scholar
  8. 8.
    Abe, Y., da Silva, M., Popović, J.: Multiobjective control with frictional contacts. In: ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 249–258 (2007)Google Scholar
  9. 9.
    Sims, K.: Evolving virtual creatures. In: Proc. of the 21st Annual Conf. on Computer Graphics and Interactive Techniques SIGGRAPH 1994, pp. 15–22 (1994)Google Scholar
  10. 10.
    Wang, J.M., Fleet, D.J., Hertzmann, A.: Optimizing walking controllers. ACM Transactions on Graphics (TOG), 168 (2009)Google Scholar
  11. 11.
    Wang, J.M., Fleet, D.J., Hertzmann, A.: Optimizing Walking Controllers for Uncertain Inputs and Environments. ACM Transactions on Graphics (SIGGRAPH) 29(4), 1–8 (2010)Google Scholar
  12. 12.
    Petrucelli, E.: The abbreviated injury scale: Evolution, usage and future adaptability. Accident Analysis & Prevention 13(1), 29–35 (1981)CrossRefGoogle Scholar
  13. 13.
    The Abbreviated Injury Scale, 1990 Revision. Technical report, Association for the Advancement of Automotive Medicine, Morton Grove, Illinois (1990)Google Scholar
  14. 14.
    Mertz, H.J.: Injury assessment values used to evaluate Hybrid III response measurements. NHTSA Docket 74, 14 (1984)Google Scholar
  15. 15.
    Foster, J.K., Kortge, J.O., Wolanin, M.J.: Hybrid III-a biomechanically-based crash test dummy. Technical report, Society of Automotive Engineers, 400 Commonwealth Dr, Warrendale, PA, 15096, USA (1977)Google Scholar
  16. 16.
    Mertz, H.J., Prasad, P., Irwin, A.L.: Injury risk curves for children and adults in frontal and rear collisions. Technical report, Soc. of Automotive Engineers (1997)Google Scholar
  17. 17.
    Morgan, R.M., Marcus, J., Eppinger, R.: Side impact-the biofidelity of NHTSA’s proposed ATD and efficacy of TTI. SAE Tech. Pap. Ser. (1986)Google Scholar
  18. 18.
    Janssen, E.G., Wismans, J., de Coo, P.J.A.: Comparison of Eurosid and Cadaver Responses in Side Impact. In: Twelfth International Technical Conference on Experimental Safety Vehicles (1989)Google Scholar
  19. 19.
    Kerrigan, J.R., Bhalla, K.S., Funk, J.R., Madeley, N.J., Bose, D.: Experiments for Establishing Pedestrian-Impact Lower Limb Injury Criteria. SAE Technical Paper (2003)Google Scholar
  20. 20.
    Crandall, J.R., Kuppa, S.M., Klopp, G.S., Hall, G.W., Pilkey, W.D., Hurwitz, S.R.: Injury mechanisms and criteria for the human foot and ankle under axial impacts to the foot. International Journal of Crashworthiness 3(2), 147–162 (1998)CrossRefGoogle Scholar
  21. 21.
    Zeidler, F.: The significance of lower limb injuries of belted drivers. Journal of Orthopedics (1984)Google Scholar
  22. 22.
    Muller, M.E., Webber, C.E., Bouxsein, M.L.: Predicting the failure load of the distal radius. Osteoporosis International 14(4), 345–352 (2003)CrossRefGoogle Scholar
  23. 23.
    Baker, S.P., O’Neill, B., Haddon Jr, W., Long, W.B.: The injury severity score: a method for describing patients with multiple injuries and evaluating emergency care. The Journal of Trauma 14(3), 187 (1974)CrossRefGoogle Scholar
  24. 24.
    Stevenson, M., Segui-Gomez, M., Lescohier, I., Di Scala, C., McDonald-Smith, G.: An overview of the injury severity score and the new injury severity score. Injury Prevention 7(1), 3–10 (2001)CrossRefGoogle Scholar
  25. 25.
    Ennis, C., McDonnell, R., O’Sullivan, C.: Seeing is believing: Body motion dominates in multisensory conversations. ACM Transactions on Graphics (TOG) 29(4), 1–9 (2010)CrossRefGoogle Scholar
  26. 26.
    Prazák, M., McDonnell, R.: Perceptual Evaluation of Human Animation Timewarping. ACM SIGGRAPH Asia Sketches and Applications, 2–3 (2010)Google Scholar
  27. 27.
    Reitsma, P.S.A., Pollard, N.S.: Perceptual metrics for character animation: sensitivity to errors in ballistic motion. ACM TOG 22(3), 537–542 (2003)CrossRefGoogle Scholar
  28. 28.
    Geijtenbeek, T., van den Bogert, A.J., van Basten, B.J.H., Egges, A.: Evaluating the Physical Realism of Character Animations Using Musculoskeletal Models. In: Boulic, R., Chrysanthou, Y., Komura, T. (eds.) MIG 2010. LNCS, vol. 6459, pp. 11–22. Springer, Heidelberg (2010), CrossRefGoogle Scholar
  29. 29.
    Smith, R.: Open Dynamics Engine User Guide v0.5 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Thomas Geijtenbeek
    • 1
  • Diana Vasilescu
    • 1
  • Arjan Egges
    • 1
  1. 1.Games and Virtual WorldsUtrecht UniversityThe Netherlands

Personalised recommendations