Twisting, Tearing and Flicking Effects in String Animations

  • Witawat Rungjiratananon
  • Yoshihiro Kanamori
  • Napaporn Metaaphanon
  • Yosuke Bando
  • Bing-Yu Chen
  • Tomoyuki Nishita
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7060)


String-like objects in our daily lives including shoelaces, threads and rubber cords exhibit interesting behaviors such as twisting, tearing and bouncing back when pulled and released. In this paper, we present a method that enables these behaviors in traditional string simulation methods that explicitly represent a string by particles and segments. We offer the following three contributions. First, we introduce a method for handling twisting effects with both uniform and non-uniform torsional rigidities. Second, we propose a method for estimating the tension acting in inextensible objects in order to reproduce tearing and flicking (bouncing back); whereas the tension for an extensible object can be easily computed via its stretched length, the length of an inextensible object is maintained constant in general, and thus we need a novel approach. Third, we introduce an optimized grid-based collision detection for an efficient computation of collisions. We demonstrate that our method allows visually plausible animations of string-like objects made of various materials and is a fast framework for interactive applications such as games.


Collision Detection Torsional Rigidity Material Frame Rupture Point Hair Strand 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baraff, D., Witkin, A.: Large steps in cloth simulation. In: ACM SIGGRAPH 1998 Conference Proceedings, pp. 43–54 (1998)Google Scholar
  2. 2.
    Bergou, M., Wardetzky, M., Robinson, S., Audoly, B., Grinspun, E.: Discrete elastic rods. ACM Transactions on Graphics 27(3), 63:1–63:12 (2008); (SIGGRAPH 2008 Conference Proceedings) CrossRefGoogle Scholar
  3. 3.
    Bertails, F., Audoly, B., Cani, M.-P., Querleux, B., Leroy, F., Lévêque, J.-L.: Super-helices for predicting the dynamics of natural hair. ACM Transactions on Graphics 25(3), 1180–1187 (2006); (SIGGRAPH 2006 Conference Proceedings) CrossRefGoogle Scholar
  4. 4.
    Bhuvenesh, C.G., Rajesh, D.A., David, M.H. (eds.): Textile sizing. CRC Press (2004)Google Scholar
  5. 5.
    Diziol, R., Bender, J., Bayer, D.: Volume conserving simulation of deformable bodies. In: Eurographics 2009 Short Papers, pp. 37–40 (2009)Google Scholar
  6. 6.
    Goldenthal, R., Harmon, D., Fattal, R., Bercovier, M., Grinspun, E.: Efficient simulation of inextensible cloth. ACM Transactions on Graphics 26(3), 49:1–49:8 (2007); (SIGGRAPH 2007 Conference Proceedings) CrossRefGoogle Scholar
  7. 7.
    Hadap, S.: Oriented strands: dynamics of stiff multi-body system. In: Proceedings of the 2006 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 91–100 (2006)Google Scholar
  8. 8.
    Harada, T.: Real-time rigid body simulation on GPUs. In: GPU Gems 3, ch. 29, pp. 123–148 (2007)Google Scholar
  9. 9.
    Metaaphanon, N., Bando, Y., Chen, B.Y., Nishita, T.: Simulation of tearing cloth with frayed edges. Computer Graphics Forum 28(7), 1837–1844 (2009); (Pacific Graphics 2009 Conference Proceedings) CrossRefGoogle Scholar
  10. 10.
    Müller, M., Heidelberger, B., Hennix, M., Ratcliff, J.: Position based dynamics. Journal of Visual Communication and Image Representation 18(2), 109–118 (2007)CrossRefGoogle Scholar
  11. 11.
    Provot, X.: Deformation constraints in a mass-spring model to describe rigid cloth behavior. In: Graphics Interface 1995 Conference Proceedings, pp. 147–154 (1995)Google Scholar
  12. 12.
    Rivers, A.R., James, D.L.: FastLSM: fast lattice shape matching for robust real-time deformation. ACM Transactions on Graphics 26(3), 82:1–82:6 (2007) (SIGGRAPH 2007 Conference Proceedings) CrossRefGoogle Scholar
  13. 13.
    Rosenblum, R.E., Carlson, W.E., Tripp, E.: Simulating the structure and dynamics of human hair: Modeling, rendering and animation. The Journal of Visualization and Computer Animation 2(4), 141–148 (1991)CrossRefGoogle Scholar
  14. 14.
    Rungjiratananon, W., Kanamori, Y., Nishita, T.: Chain shape matching for simulating complex hairstyles. Computer Graphics Forum 29(8), 2438–2446 (2010)CrossRefGoogle Scholar
  15. 15.
    Selle, A., Lentine, M., Fedkiw, R.: A mass spring model for hair simulation. ACM Transactions on Graphics 27(3), 64:1–64:11 (2008); (SIGGRAPH 2008 Conference Proceedings)CrossRefGoogle Scholar
  16. 16.
    Sobottka, G., Weber, A.: Efficient bounding volume hierarchies for hair simulation. In: Proceedings of the 2nd Workshop on Virtual Reality Interactions and Physical Simulations, pp. 1–10 (2005)Google Scholar
  17. 17.
    Spillmann, J., Teschner, M.: CORDE: Cosserat rod elements for the dynamic simulation of one-dimensional elastic objects. In: Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 63–72 (2007)Google Scholar
  18. 18.
    Spillmann, J., Teschner, M.: An adaptive contact model for the robust simulation of knots. Computer Graphics Forum 27(2), 497–506 (2008); (Eurographics 2008 Conference Proceedings)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Witawat Rungjiratananon
    • 1
  • Yoshihiro Kanamori
    • 2
  • Napaporn Metaaphanon
    • 3
  • Yosuke Bando
    • 4
  • Bing-Yu Chen
    • 5
  • Tomoyuki Nishita
    • 1
  1. 1.The University of TokyoJapan
  2. 2.University of TsukubaJapan
  3. 3.Square EnixJapan
  4. 4.TOSHIBA CorporationJapan
  5. 5.National Taiwan UniversityTaiwan

Personalised recommendations