Introduction

Chapter
Part of the SpringerBriefs in Molecular Science book series (BRIEFSMOLECULAR)

Abstract

The charge mobility, μ, which characterizes the ability of a charge to move in a bulk semiconductor, is the essential parameter in determining the overall performance of electronic devices reported by Coropceanu et al. (Chem Rev 107:926, 2007). By definition, it is the charge drift velocity, v, acquired per driving electric field, F, i.e., μ = v/F, usually expressed in unit of cm2/Vs. In the absence of scattering, the field-induced momentum gain for an electron, Δq = −eFt, should increase linearly with the time period t. However, according to the classical Boltzmann transport picture, due to the scattering with impurities, defects, and lattice vibrations, the electron momentum is restored to its original value after the mean scattering time, τ, i.e., the average time between two consecutive scattering events.

Keywords

Charge Transport Acoustic Phonon Charge Mobility Reorganization Energy Intramolecular Vibration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    V. Coropceanu, J. Cornil, D.A. da Silva Filho, Y. Olivier, R.J. Silbey, J.-L. Brédas, Chem. Rev. 107, 926 (2007)CrossRefGoogle Scholar
  2. 2.
    W.F. Beadle, J.C.C. Tsai, R.D. Plummer (eds.), Quick Reference Manual of Semiconductor Engineers (Wiley, New York, 1985)Google Scholar
  3. 3.
    C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A.N. Marchenkov, E.H. Conrad, P.N. First, W.A. de Heer, Science 312, 1191 (2006)CrossRefGoogle Scholar
  4. 4.
    A.J. Heeger, N.S. Sariciftci, E.B. Namdas, Semiconducting and Metallic Polymers (Oxford University Press, New York, 2010)Google Scholar
  5. 5.
    C.R. Newman, C.D. Frisbie, D.A. da Silva Filho, J.L. Brédas, P.C. Ewbank, K.R. Mann, Chem. Mater. 16, 4436 (2004)CrossRefGoogle Scholar
  6. 6.
    V.C. Sundar, J. Zaumseil, V. Podzorov, E. Menard, R.L. Willett, T. Someya, M.E. Gershenson, J.A. Rogers, Science 303, 1644 (2004)CrossRefGoogle Scholar
  7. 7.
    T. Holstein, Ann. Phys. (N.Y.) 8, 325 (1959)CrossRefGoogle Scholar
  8. 8.
    H. Bässler, Philos. Mag. B 50, 347 (1984)CrossRefGoogle Scholar
  9. 9.
    A. Dieckmann, H. Bässler, P.M. Borsenberger, J. Chem. Phys. 99, 8136 (1993)CrossRefGoogle Scholar
  10. 10.
    M.E. Gershenson, V. Podzorov, A.F. Morpurgo, Rev. Mod. Phys. 78, 973 (2006)CrossRefGoogle Scholar
  11. 11.
    L.J. Wang, G.J. Nan, X.D. Yang, Q. Peng, Q.K. Li, Z.G. Shuai, Chem. Soc. Rev. 39, 423 (2010)CrossRefGoogle Scholar
  12. 12.
    J.L. Brédas, D. Beljonne, V. Coropceanu, J. Cornil, Chem. Rev. 104, 4971 (2004)CrossRefGoogle Scholar
  13. 13.
    J.E. Norton, J.L. Brédas, J. Am. Chem. Soc. 130, 12377 (2008)CrossRefGoogle Scholar
  14. 14.
    R. Silbey, R.W. Munn, J. Chem. Phys. 72, 2763 (1980)CrossRefGoogle Scholar
  15. 15.
    V.M. Kenkre, J.D. Anderson, D.H. Dunlap, C.B. Duck, Phys. Rev. Lett. 62, 1165 (1989)CrossRefGoogle Scholar
  16. 16.
    K. Hannewald, V.M. Stojanović, J.M.T. Schellekens, P.A. Bobbert, G. Kresse, J. Hafner, Phys. Rev. B 69, 075211 (2004)CrossRefGoogle Scholar
  17. 17.
    L.J. Wang, Q. Peng, Q.K. Li, Z.G. Shuai, J. Chem. Phys. 127, 044506 (2007)CrossRefGoogle Scholar
  18. 18.
    M. Hultell, S. Stafström, Chem. Phys. Lett. 428, 446 (2006)CrossRefGoogle Scholar
  19. 19.
    A. Troisi, G. Orlandi, Phys. Rev. Lett. 96, 086601 (2006)CrossRefGoogle Scholar
  20. 20.
    S.W. Yin, Y.P. Yi, Q.X. Li, G. Yu, Y.Q. Liu, Z.G. Shuai, J. Phys. Chem. A 110, 7138 (2006)CrossRefGoogle Scholar
  21. 21.
    Y.B. Song, C.A. Di, X.D. Yang, S.P. Li, W. Xu, Y.Q. Liu, L.M. Yang, Z.G. Shuai, D.Q. Zhang, D.B. Zhu, J. Am. Chem. Soc. 128, 15940 (2006)CrossRefGoogle Scholar
  22. 22.
    X.D. Yang, Q.K. Li, Z.G. Shuai, Nanotech. 18, 424029 (2007)CrossRefGoogle Scholar
  23. 23.
    L.Q. Li, H.X. Li, X.D. Yang, W.P. Hu, Y.B. Song, Z.G. Shuai, W. Xu, Y.Q. Liu, D.B. Zhu, Adv. Mater. 19, 2613 (2007)CrossRefGoogle Scholar
  24. 24.
    X.D. Yang, L.J. Wang, C.L. Wang, W. Long, Z.G. Shuai, Chem. Mater. 20, 3205 (2008)CrossRefGoogle Scholar
  25. 25.
    G.J. Nan, X.D. Yang, L.J. Wang, Z.G. Shuai, Y. Zhao, Phys. Rev. B 79, 115203 (2009)CrossRefGoogle Scholar
  26. 26.
    L.J. Wang, Q.K. Li, Z.G. Shuai, L.P. Chen, Q. Shi, Phys. Chem. Chem. Phys. 12, 3309 (2010)CrossRefGoogle Scholar
  27. 27.
    L.J. Wang, Q.K. Li, Z.G. Shuai, J. Mol. Sci. (Chinese) 24, 133 (2008)Google Scholar
  28. 28.
    L.J. Wang, Q.K. Li, Z.G. Shuai, J. Chem. Phys. 128, 194706 (2008)CrossRefGoogle Scholar
  29. 29.
    L. Tang, M.Q. Long, D. Wang, Z.G. Shuai, Sci. China Ser. B-Chem. 52, 1646 (2009)CrossRefGoogle Scholar
  30. 30.
    M.Q. Long, L. Tang, D. Wang, L.J. Wang, Z.G. Shuai, J. Am. Chem. Soc. 131, 224704 (2009)Google Scholar
  31. 31.
    M.Q. Long, L. Tang, D. Wang, Y.L. Li, Z.G. Shuai, ACS Nano 5, 2593 (2011)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  1. 1.Department of ChemistryTsinghua UniversityBeijingPeople’s Republic of China
  2. 2.Service de Chimie des Matériaux NouveauxUniversité de MonsMonsBelgium

Personalised recommendations