RELIN: Relatedness and Informativeness-Based Centrality for Entity Summarization

  • Gong Cheng
  • Thanh Tran
  • Yuzhong Qu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7031)


Linked Data is developing towards a large, global repository for structured, interlinked descriptions of real-world entities. An emerging problem in many Web applications making use of data like Linked Data is how a lengthy description can be tailored to the task of quickly identifying the underlying entity. As a solution to this novel problem of entity summarization, we propose RELIN, a variant of the random surfer model that leverages the relatedness and informativeness of description elements for ranking. We present an implementation of this conceptual model, which captures the semantics of description elements based on linguistic and information theory concepts. In experiments involving real-world data sets and users, our approach outperforms the baselines, producing summaries that better match handcrafted ones and further, shown to be useful in a concrete task.


Distributional relatedness entity summarization informativeness PageRank random surfer model 


  1. 1.
    Aleman-Meza, B., Halaschek-Wiener, C., Budak Arpinar, I., Ramakrishnan, C., Sheth, A.P.: Ranking Complex Relationships on the Semantic Web. IEEE Internet Comput. 9(3), 37–44 (2005)CrossRefGoogle Scholar
  2. 2.
    Bu, S., Lakshmanan, L.V.S., Ng, R.T.: MDL Summarization with Holes. In: 31st International Conference on Very Large Data Bases, pp. 433–444. ACM, New York (2005)Google Scholar
  3. 3.
    Budanitsky, A., Hirst, G.: Evaluating WordNet-based Measures of Lexical Semantic Relatedness. Comput. Linguist. 32(1), 13–47 (2006)CrossRefzbMATHGoogle Scholar
  4. 4.
    Carbonell, J., Goldstein, J.: The Use of MMR, Diversity-Based Reranking for Reordering Documents and Producing Summaries. In: 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 335–336. ACM, New York (1998)Google Scholar
  5. 5.
    Cheng, G., Qu, Y.: Searching Linked Objects with Falcons: Approach, Implementation and Evaluation. Int. J. Semant. Web Inf. Syst. 5(3), 49–70 (2009)CrossRefGoogle Scholar
  6. 6.
    Delbru, R., Toupikov, N., Catasta, M., Tummarello, G., Decker, S.: Hierarchical Link Analysis for Ranking Web Data. In: Aroyo, L., Antoniou, G., Hyvönen, E., ten Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC 2010, Part II. LNCS, vol. 6089, pp. 225–239. Springer, Heidelberg (2010)Google Scholar
  7. 7.
    Diligenti, M., Gori, M., Maggini, M.: A Unified Probabilistic Framework for Web Page Scoring Systems. IEEE Trans. Knowl. Data Eng. 16(1), 4–16 (2004)CrossRefGoogle Scholar
  8. 8.
    Erkan, G., Radev, D.R.: LexRank: Graph-based Centrality as Salience in Text Summarization. J. Artif. Intell. Res. 22, 457–479 (2004)Google Scholar
  9. 9.
    Franz, T., Schultz, A., Sizov, S., Staab, S.: TripleRank: Ranking Semantic Web Data by Tensor Decomposition. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 213–228. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Haveliwala, T.H.: Topic-Sensitive PageRank: A Context-Sensitive Ranking Algorithm for Web Search. IEEE Trans. Knowl. Data Eng. 15(4), 784–796 (2003)CrossRefGoogle Scholar
  11. 11.
    Jeffery, S.R., Franklin, M.J., Halevy, A.Y.: Pay-as-you-go User Feedback for Dataspace Systems. In: 2008 ACM SIGMOD International Conference on Management of Data, pp. 847–860. ACM, New York (2008)CrossRefGoogle Scholar
  12. 12.
    Mohammad, S., Hirst, G.: Distributional Measures of Concept-distance: A Task-oriented Evaluation. In: 2006 Conference on Empirical Methods in Natural Language Processing, pp. 35–43. ACL, Sydney (2006)CrossRefGoogle Scholar
  13. 13.
    Navlakha, S., Rastogi, R., Shrivastava, N.: Graph Summarization with Bounded Error. In: 2008 ACM SIGMOD International Conference on Management of Data, pp. 419–432. ACM, New York (2008)CrossRefGoogle Scholar
  14. 14.
    Nie, Z., Ma, Y., Shi, S., Wen, J.-R., Ma, W.-Y.: Web Object Retrieval. In: 16th International World Wide Web Conference, pp. 81–90. ACM, New York (2007)CrossRefGoogle Scholar
  15. 15.
    Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank Citation Ranking: Bringing Order to the Web. Technical report, Stanford InfoLab (1999)Google Scholar
  16. 16.
    Penin, T., Wang, H., Tran, T., Yu, Y.: Snippet Generation for Semantic Web Search Engines. In: Gómez-Pérez, A., Yu, Y., Ding, Y. (eds.) ASWC 2009. LNCS, vol. 5926, pp. 493–507. Springer, Heidelberg (2009)Google Scholar
  17. 17.
    Radev, D.R., Jing, H., Styś, M., Tam, D.: Centroid-based Summarization of Multiple Documents. Inf. Process. Manag. 40(6), 919–938 (2004)CrossRefzbMATHGoogle Scholar
  18. 18.
    Spärck Jones, K.: Automatic Summarising: The State of the Art. Inf. Process. Manag. 43(6), 1449–1481 (2007)CrossRefGoogle Scholar
  19. 19.
    Tran, T., Wang, H., Haase, P.: Hermes: Data Web Search on a Pay-as-you-go Integration Infrastructure. J. Web Semant. 7(3), 189–203 (2009)CrossRefGoogle Scholar
  20. 20.
    Zhang, X., Cheng, G., Qu, Y.: Ontology Summarization Based on RDF Sentence Graph. In: 16th International World Wide Web Conference, pp. 707–716. ACM, New York (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Gong Cheng
    • 1
  • Thanh Tran
    • 2
  • Yuzhong Qu
    • 1
  1. 1.State Key Laboratory for Novel Software TechnologyNanjing UniversityNanjingChina
  2. 2.Institute AIFBKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations