Inspecting Regularities in Ontology Design Using Clustering

  • Eleni Mikroyannidi
  • Luigi Iannone
  • Robert Stevens
  • Alan Rector
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7031)


We propose a novel application of clustering analysis to identify regularities in the usage of entities in axioms within an ontology. We argue that such regularities will be able to help to identify parts of the schemas and guidelines upon which ontologies are often built, especially in the absence of explicit documentation. Such analysis can also isolate irregular entities, thus highlighting possible deviations from the initial design. The clusters we obtain can be fully described in terms of generalised axioms that offer a synthetic representation of the detected regularity. In this paper we discuss the results of the application of our analysis to different ontologies and we discuss the potential advantages of incorporating it into future authoring tools.


Object Property Cell Mediate Cytotoxicity Regular Design Synthetic Representation Proximity Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Snomed technical reference guide (January 2011),
  2. 2.
    Egaña, M., Rector, A., Stevens, R., Antezana, E.: Applying ontology design patterns in bio-ontologies (2008)Google Scholar
  3. 3.
    Gangemi, A.: Ontology Design Patterns for Semantic Web Content. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 262–276. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Gangemi, A., Presutti, V.: Ontology design patterns. In: Handbook on Ontologies, pp. 221–243 (2009)Google Scholar
  5. 5.
    Horridge, M., Parsia, B., Sattler, U.: Laconic and Precise Justifications in OWL. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 323–338. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Iannone, L., Aranguren, M.E., Rector, A.L., Stevens, R.: Augmenting the expressivity of the ontology pre-processor language. In: OWLED. CEUR Workshop Proceedings, vol. 432. (2008)Google Scholar
  7. 7.
    Iannone, L., Rector, A., Stevens, R.: Embedding Knowledge Patterns into OWL. In: Aroyo, L., Traverso, P., Ciravegna, F., Cimiano, P., Heath, T., Hyvönen, E., Mizoguchi, R., Oren, E., Sabou, M., Simperl, E. (eds.) ESWC 2009. LNCS, vol. 5554, pp. 218–232. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Jupp, S., Horridge, M., Iannone, L., Klein, J., Owen, S., Schanstra, J., Stevens, R., Wolstencroft, K.: Populous: A tool for populating ontology templates. Arxiv preprint arXiv:1012.1745 (2010)Google Scholar
  9. 9.
    Parsia, B., Sirin, E., Kalyanpur, A.: Debugging OWL ontologies. In: Proceedings of the 14th International Conference on World Wide Web, pp. 633–640. ACM (2005)Google Scholar
  10. 10.
    Peters, B., Ruttenberg, A., Greenbaum, J., Courtot, M., Brinkman, R., Whetzel, P., Schober, D., Sansone, S., Scheuerman, R., Rocca-Serra, P.: Overcoming the ontology enrichment bottleneck with quick term templates (2009)Google Scholar
  11. 11.
    Šváb-Zamazal, O., Svátek, V.: Analysing Ontological Structures Through Name Pattern Tracking. In: Gangemi, A., Euzenat, J. (eds.) EKAW 2008. LNCS (LNAI), vol. 5268, pp. 213–228. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Šváb-Zamazal, O., Svátek, V., Iannone, L.: Pattern-Based Ontology Transformation Service Exploiting OPPL and OWL-API. In: Cimiano, P., Pinto, H.S. (eds.) EKAW 2010. LNCS, vol. 6317, pp. 105–119. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Tan, P.-N., Steinbach, M., Kumar, V.: Introduction to Data Mining. Addison-Wesley (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Eleni Mikroyannidi
    • 1
  • Luigi Iannone
    • 1
  • Robert Stevens
    • 1
  • Alan Rector
    • 1
  1. 1.The University of ManchesterManchesterUK

Personalised recommendations