ANAPSID: An Adaptive Query Processing Engine for SPARQL Endpoints

  • Maribel Acosta
  • Maria-Esther Vidal
  • Tomas Lampo
  • Julio Castillo
  • Edna Ruckhaus
Conference paper

DOI: 10.1007/978-3-642-25073-6_2

Part of the Lecture Notes in Computer Science book series (LNCS, volume 7031)
Cite this paper as:
Acosta M., Vidal ME., Lampo T., Castillo J., Ruckhaus E. (2011) ANAPSID: An Adaptive Query Processing Engine for SPARQL Endpoints. In: Aroyo L. et al. (eds) The Semantic Web – ISWC 2011. ISWC 2011. Lecture Notes in Computer Science, vol 7031. Springer, Berlin, Heidelberg

Abstract

Following the design rules of Linked Data, the number of available SPARQL endpoints that support remote query processing is quickly growing; however, because of the lack of adaptivity, query executions may frequently be unsuccessful. First, fixed plans identified following the traditional optimize-then-execute paradigm, may timeout as a consequence of endpoint availability. Second, because blocking operators are usually implemented, endpoint query engines are not able to incrementally produce results, and may become blocked if data sources stop sending data. We present ANAPSID, an adaptive query engine for SPARQL endpoints that adapts query execution schedulers to data availability and run-time conditions. ANAPSID provides physical SPARQL operators that detect when a source becomes blocked or data traffic is bursty, and opportunistically, the operators produce results as quickly as data arrives from the sources. Additionally, ANAPSID operators implement main memory replacement policies to move previously computed matches to secondary memory avoiding duplicates. We compared ANAPSID performance with respect to RDF stores and endpoints, and observed that ANAPSID speeds up execution time, in some cases, in more than one order of magnitude.

Download to read the full conference paper text

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Maribel Acosta
    • 1
  • Maria-Esther Vidal
    • 1
  • Tomas Lampo
    • 2
  • Julio Castillo
    • 1
  • Edna Ruckhaus
    • 1
  1. 1.Universidad Simón BolívarCaracasVenezuela
  2. 2.University of MarylandCollege ParkUSA

Personalised recommendations