Advertisement

On One Method of Proving Inequalities in Automated Way

  • Pavel Pech
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6877)

Abstract

The paper describes proving geometric inequalities in automated way without cell decomposition. Firstly an overview of known methods of proving inequalities is given including the method which is based on reduction of a conclusion polynomial to the canonical form modulo a hypotheses ideal. Then a parametrization method of proving geometric inequalities is introduced. Further a method of proving geometric inequalities which introduces an auxiliary polynomial is described.

Keywords

geometric inequalities automated geometry theorem proving 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bottema, O., et al.: Geometric inequalities, Groningen (1969)Google Scholar
  2. 2.
    Buchberger, B.: Groebner bases: an algorithmic method in polynomial ideal theory. In: Bose, N.-K. (ed.) Multidimensional Systems Theory, pp. 184–232. Reidel, Dordrecht (1985)CrossRefGoogle Scholar
  3. 3.
    Chou, S.C.: Mechanical Geometry Theorem Proving. D. Reidel Publishing Company, Dordrecht (1987)CrossRefzbMATHGoogle Scholar
  4. 4.
    Chou, S.C., Gao, X.S., Arnon, D.S.: On the mechanical proof of geometry theorems involving inequalities. Advances in Computing Research 6, 139–181 (1992)Google Scholar
  5. 5.
    Collins, G.E.: Quantifier elimination for the elementary theory of real closed fields by cylindrical algebraic decomposition. In: Brakhage, H. (ed.) GI-Fachtagung 1975. LNCS, vol. 33, pp. 134–183. Springer, Heidelberg (1975)Google Scholar
  6. 6.
    Cox, D., Little, J., O’Shea, D.: Ideals, Varieties and Algorithms. Springer, Berlin (1997)zbMATHGoogle Scholar
  7. 7.
    Dalzotto, G., Recio, T.: On protocols for the automated discovery of theorems in elementary geometry. Journal of Automated Reasoning 43, 203–236 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Gerber, L.: The orthocentric simplex as an extreme simplex. Pacific J. of Math. 56, 97–111 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Hou, X., Xu, S., Shao, J.: Some geometric properties of successive difference substitutions. Science China, Information Sciences 54, 778–786 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Kapur, D.: A Refutational Approach to Geometry Theorem Proving. Artificial Intelligence Journal 37, 61–93 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Mitrinovic, D.S., Pecaric, J.E., Volenec, V.: Recent Advances in Geometric Inequalities. Kluwer Acad. Publ., Dordrecht (1989)CrossRefzbMATHGoogle Scholar
  12. 12.
    Nelsen, R.: Proofs Without Words. MAA (1993)Google Scholar
  13. 13.
    Parrilo, P.A.: Structured Semidefinite Programs and Semialgebraic Geometry Methods in Robustness and Optimization. PhD. thesis. California Institute of Technology, Pasadena, California (2000)Google Scholar
  14. 14.
    Pech, P.: Selected topics in geometry with classical vs. computer proving. World Scientific Publishing, New Jersey (2007)CrossRefzbMATHGoogle Scholar
  15. 15.
    Recio, T., Sterk, H., Vélez, M.P.: Project 1. Automatic Geometry Theorem Proving. In: Cohen, A., Cuipers, H., Sterk, H. (eds.) Some Tapas of Computer Algebra, Algorithms and Computations in Mathematics, vol. 4, pp. 276–296. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  16. 16.
    Reznick, B.: Some concrete aspects of Hilbert’s 17th Problem. Contemp. Math. 253, 257–272 (2000)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Wang, D.: Gröbner Bases Applied to Geometric Theorem Proving and Discovering. In: Buchberger, B., Winkler, F. (eds.) Gröbner Bases and Applications. Lecture Notes of Computer Algebra, pp. 281–301. Cambridge Univ. Press, Cambridge (1998)CrossRefGoogle Scholar
  18. 18.
    Wang, D.: Elimination Methods. Springer, Wien (2001)CrossRefzbMATHGoogle Scholar
  19. 19.
    Wang, D.: Elimination Practice. Software Tools and Applications. Imperial College Press, London (2004)CrossRefzbMATHGoogle Scholar
  20. 20.
    Weitzenböck, R.: Math. Zeitschrift 5, 137–146 (1919)Google Scholar
  21. 21.
    Wu, W.-T.: Mathematics Mechanization. Science Press, Kluwer Academic Publishers, Beijing, Dordrecht (2000)Google Scholar
  22. 22.
    Yang, L., Zhang, J.: A Practical Program of Automated Proving for a Class of Geometric Inequalities. In: Richter-Gebert, J., Wang, D. (eds.) ADG 2000. LNCS (LNAI), vol. 2061, pp. 41–57. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  23. 23.
    Yang, L.: Difference substitution and automated inequality proving. Journal of Guangzhou Univ., Natural Science Edition 5(2), 1–7 (2006)MathSciNetGoogle Scholar
  24. 24.
    Yao, Y.: Termination od the sequence of SDS and machine decision for positive semi-definite forms. arXiv:0904.4030v1 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Pavel Pech
    • 1
  1. 1.Faculty of EducationUniversity of South BohemiaČeské BudějoviceCzech Republic

Personalised recommendations