# Proof Documents for Automated Origami Theorem Proving

• Tetsuo Ida
• Asem Kasem
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6877)

## Abstract

A proof document for origami theorem proving is a record of entire process of reasoning about origami construction and theorem proving. It is produced at the completion of origami theorem proving as a kind of proof certificate. It describes in detail how the whole process of an origami construction and the subsequent theorem proving are carried out in our computational origami system. In particular, it describes logical and algebraic transformations of the prescription of origami construction into mathematical models that in turn become amenable to computation and verification. The structure of the proof document is detailed using an illustrative example that reveals the importance of such a document in the analysis of origami construction and theorem proving.

## Keywords

Theorem Prove Algebraic Expression Proof Assistant Automate Theorem Prove Algebraic Transformation
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## References

1. 1.
The Coq Proof Assistant, http://coq.inria.fr/
2. 2.
Pearson, K.R., Jones, A., Morris, S.A.: Abstract Algebra and Famous Impossibilities. Springer, Heidelberg (1991)
3. 3.
Alperin, R.C.: A Mathematical Theory of Origami Constructions and Numbers. New York Journal of Mathematics 6, 119–133 (2000)
4. 4.
Buchberger, B., Dupre, C., Jebelean, T., Kriftner, F., Nakagawa, K., Văsaru, D., Windsteiger, W.: The Theorema Project: A Progress Report. In: Symbolic Computation and Automated Reasoning (Calculemus 2000), St. Andrews, Scotland, pp. 98–113 (2000)Google Scholar
5. 5.
Ghourabi, F., Ida, T.: Orikoto: A Language for Origami Construction and Theorem Proving. In: Frontiers of Computer Science in China (2010); (Submitted, the extended abstract was presented in the fifth International Conference on Origami in Science, Mathematics and Education (5OSME)Google Scholar
6. 6.
Ghourabi, F., Ida, T., Takahashi, H., Marin, M., Kasem, A.: Logical and Algebraic View of Huzita’s Origami Axioms with Applications to Computational Origami. In: Proceedings of the 22nd ACM Symposium on Applied Computing (SAC 2007), Seoul, Korea, pp. 767–772 (2007)Google Scholar
7. 7.
Huzita, H.: Axiomatic Development of Origami Geometry. In: Proceedings of the First International Meeting of Origami Science and Technology, pp. 143–158 (1989)Google Scholar
8. 8.
Ida, T., Kasem, A., Ghourabi, F., Takahashi, H.: Morley’s theorem revisited: Origami construction and automated proof. Journal of Symbolic Computation 46(5), 571–583 (2011)
9. 9.
Ida, T., Takahashi, H., Marin, M., Ghourabi, F., Kasem, A.: Computational Construction of a Maximum Equilateral Triangle Inscribed in an Origami. In: Iglesias, A., Takayama, N. (eds.) ICMS 2006. LNCS, vol. 4151, pp. 361–372. Springer, Heidelberg (2006)
10. 10.
Justin, J.: Résolution par le pliage de l’équation du troisième degré et applications géométriques. In: Proceedings of the First International Meeting of Origami Science and Technology, pp. 251–261 (1989)Google Scholar
11. 11.
Kasem, A., Ghourabi, F., Ida, T.: Origami Axioms and Circle Extension. In: Proceedings of the 26th Symposium on Applied Computing, pp. 1106–1111. ACM press (2011)Google Scholar
12. 12.
Narboux, J.: A Graphical User Interface for Formal Proofs in Geometry. Journal of Automated Reasoning 39(2), 161–180 (2007)
13. 13.
Robu, J., Ida, T., Ţepeneu, D., Takahashi, H., Buchberger, B.: Computational Origami Construction of a Regular Heptagon with Automated Proof of Its Correctness. In: Hong, H., Wang, D. (eds.) ADG 2004. LNCS (LNAI), vol. 3763, pp. 19–33. Springer, Heidelberg (2006)
14. 14.
Wang, D.: GEOTHER 1.1: Handling and Proving Geometric Theorems Automatically. In: Winkler, F. (ed.) ADG 2002. LNCS (LNAI), vol. 2930, pp. 194–215. Springer, Heidelberg (2004)
15. 15.
Wantzel, P.L.: Recherches sur les moyens de connaitre si un problème de géométrie peut se résoudre avec la règle et le compas. Journal de Mathématiques Pures et Appliquées, 366–372 (1984)Google Scholar
16. 16.
Wolfram, S.: The Mathematica Book, 5th edn. Wolfram Media (2003)Google Scholar
17. 17.
Wu, W.T.: Basic Principles of Mechanical Theorem Proving in Elementary Geometry. Journal of Automated Reasoning 2, 221–252 (1986)