Advertisement

Automatic Calculation of Plane Loci Using Gröbner Bases and Integration into a Dynamic Geometry System

  • Michael Gerhäuser
  • Alfred Wassermann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6877)

Abstract

We describe the integration of a well known algorithm for computing and displaying plane loci based on ideal elimination using Gröbner bases in the dynamic geometry software JSXGraph. With our approach it is not only possible to determine loci depending on other loci but it is also possible to extend JSXGraph to deal with loci depending on arbitrary plane algebraic curves. For Gröbner bases calculations we use CoCoa, a computer algebra system with its focus on computations in commutative algebra.

Keywords

dynamic geometry system gröbner bases automatic discovery of plane loci 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Becker, T., Weispfenning, V.: Gröbner bases: a computational approach to commutative algebra. Springer, Heidelberg (1993)CrossRefzbMATHGoogle Scholar
  2. 2.
    Botana, F., Valcarce, J.L.: A software tool for the investigation of plane loci. Mathematics and Computers in Simulation 61(2), 139–152 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Botana, F.: A Web-Based Intelligent System for Geometric Discovery. In: Sloot, P.M.A., Abramson, D., Bogdanov, A.V., Gorbachev, Y.E., Dongarra, J., Zomaya, A.Y. (eds.) ICCS 2003, Part I. LNCS, vol. 2657, pp. 801–810. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Botana, F., Abánades, M.A., Escribano, J.: Computing Locus Equations for Standard Dynamic Geometry Environments. In: Shi, Y., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2007, Part II. LNCS, vol. 4488, pp. 227–234. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Buchberger, B.: Introduction to Gröbner Bases. In: Buchberger, B., Winkler, F. (eds.) Gröbner bases and applications. London Mathematical Society Lecture Note Series. Cambridge University Press (1998)Google Scholar
  6. 6.
    CoCoA: a system for doing Computations in Commutative Algebra, urlhttp://cocoa.dima.unige.itGoogle Scholar
  7. 7.
    Cox, D.A., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra. Springer, New York (2008)zbMATHGoogle Scholar
  8. 8.
    Fröberg, R.: An Introduction to Gröbner Bases. John Wiley & Sons (1997)Google Scholar
  9. 9.
    von zur Gathen, J., Gerhard, J.: Modern Computer Algebra. Cambridge University Press (1999)Google Scholar
  10. 10.
    Gerhäuser, M., Miller, C., Valentin, B., Wassermann, A., Wilfahrt, P.: JSXGraph: Dynamic Mathematics Running on (nearly) Every Device. To be published in The Electronic Journal of Mathematics and TechnologyGoogle Scholar
  11. 11.
    Hunter, J.D.: Matplotlib: A 2D Graphics Environment. In: Computing in Science & Engineering, vol. 9, pp. 90–95. IEEE Computer Society, Los Alamitos (2007)Google Scholar
  12. 12.
    Kortenkamp, U.: Foundations of Dynamic Geometry. Dissertation (1999)Google Scholar
  13. 13.
    Lebmeir, P., Richter-Gebert, J.: Recognition of Computationally Constructed Loci. In: Botana, F., Recio, T. (eds.) ADG 2006. LNCS (LNAI), vol. 4869, pp. 52–67. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Pilgrim, M.: Dive Into Python. APress (2004)Google Scholar
  15. 15.
    Recio, T., Vélez, M.P.: Automatic Discovery of Theorems in Elementary Geometry. Journal of Automated Reasoning, 63–82 (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Michael Gerhäuser
    • 1
  • Alfred Wassermann
    • 1
  1. 1.Department of MathematicsUniversity of BayreuthBayreuthGermany

Personalised recommendations