A Coherent Logic Based Geometry Theorem Prover Capable of Producing Formal and Readable Proofs

  • Sana Stojanović
  • Vesna Pavlović
  • Predrag Janičić
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6877)


We present a theorem prover ArgoCLP based on coherent logic that can be used for generating both readable and formal (machine verifiable) proofs in various theories, primarily geometry. We applied the prover to various axiomatic systems and proved tens of theorems from standard university textbooks on geometry. The generated proofs can be used in different educational purposes and can contribute to the growing body of formalized mathematics. The system can be used, for instance, in showing that modifications of some axioms do not change the power of an axiom system. The system can also be used as an assistant for proving appropriately chosen subgoals of complex conjectures.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Avigad, J., Dean, E., Mumma, J.: A formal system for Euclid’s Elements. The Review of Symbolic Logic (2009)Google Scholar
  2. 2.
    Bezem, M., Coquand, T.: Automating coherent logic. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835, pp. 246–260. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Bezem, M., Hendriks, D.: On the Mechanization of the Proof of Hessenberg’s Theorem in Coherent Logic. Journal of Automated Reasoning 40(1) (2008)Google Scholar
  4. 4.
    Borsuk, K., Szmielew, W.: Foundations of Geometry. Norht-Holland Publishing Company, Amsterdam (1960)zbMATHGoogle Scholar
  5. 5.
    Buchberger, B.: An Algorithm for finding a basis for the residue class ring of a zero-dimensional polynomial ideal. PhD thesis. University of Innsbruck (1965)Google Scholar
  6. 6.
    Buchberger, B., et al.: Theorema: Towards computer-aided mathematical theory exploration. Journal of Applied Logic (2006)Google Scholar
  7. 7.
    Chou, S.-C.: Mechanical Geometry Theorem Proving. D. Reidel Publishing Company, Dordrecht (1988)zbMATHGoogle Scholar
  8. 8.
    Chou, S.-C., Gao, X.-S.: Automated reasoning in geometry. In: Handbook of Automated Reasoning. Elsevier (2001)Google Scholar
  9. 9.
    Chou, S.-C., Gao, X.-S., Zhang, J.-Z.: Machine Proofs in Geometry. World Scientific, Singapore (1994)CrossRefzbMATHGoogle Scholar
  10. 10.
    Chou, S.-C., Gao, X.-S., Zhang, J.-Z.: Automated production of traditional proofs for constructive geometry theorems. In: IEEE Symposium on Logic in Computer Science LICS. IEEE Computer Society Press (1993)Google Scholar
  11. 11.
    Chou, S.-C., Gao, X.-S., Zhang, J.-Z.: Automated generation of readable proofs with geometric invariants, II. theorem proving with full-angles. Journal of Automated Reasoning 17 (1996)Google Scholar
  12. 12.
    Chou, S.-C., Gao, X.-S., Zhang, J.-Z.: A Deductive Database Approach to Automated Geometry Theorem Proving and Discovering. Journal Automated Reasoning 25(3) (2000)Google Scholar
  13. 13.
    Dehlinger, C., Dufourd, J.-F., Schreck, P.: Higher-order intuitionistic formalization and proofs in hilbert’s elementary geometry. In: Richter-Gebert, J., Wang, D. (eds.) ADG 2000. LNCS (LNAI), vol. 2061, pp. 306–323. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  14. 14.
    Duprat, J.: Une axiomatique de la géométrie plane en coq. In: Actes des JFLA 2008, INRIA (2008)Google Scholar
  15. 15.
    Fisher, J., Bezem, M.: Skolem Machines and Geometric Logic. In: Jones, C.B., Liu, Z., Woodcock, J. (eds.) ICTAC 2007. LNCS, vol. 4711, pp. 201–215. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Gelernter, H., Hanson, J.R., Loveland, D.W.: Empirical explorations of the geometry-theorem proving machine. In: Computers and Thought. MIT Press (1995)Google Scholar
  17. 17.
    Guilhot, F.: Formalisation en coq d’un cours de géométrie pour le lycée. Journées Francophones des Langages Applicatifs (2004)Google Scholar
  18. 18.
    Harrison, J.: Hol light: A Tutorial Introduction. In: Srivas, M., Camilleri, A. (eds.) FMCAD 1996. LNCS, vol. 1166, pp. 265–269. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  19. 19.
    Heath, T.L.: The Thirteen Books of Euclid’s Elements. Dover Publications, New-York (1956)zbMATHGoogle Scholar
  20. 20.
    Hilbert, D.: Grundlagen der Geometrie, Leipzig (1899)Google Scholar
  21. 21.
    Janičić, P., Kordić, S.: EUCLID — the geometry theorem prover. FILOMAT 9(3) (1995)Google Scholar
  22. 22.
    Kahn, G.: Constructive geometry according to Jan von Plato. Coq contribution. Coq V5.10 (1995)Google Scholar
  23. 23.
    Kapur, D.: Using Gröbner bases to reason about geometry problems. Journal of Symbolic Computation 2(4) (1986)Google Scholar
  24. 24.
    Magaud, N., Narboux, J., Schreck, P.: Formalizing Projective Plane Geometry in Coq. In: Sturm, T., Zengler, C. (eds.) ADG 2008. LNCS, vol. 6301, pp. 141–162. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  25. 25.
    Magaud, N., Narboux, J., Schreck, P.: Formalizing Desargues’ theorem in Coq using ranks. In: ACM Symposium on Applied Computing. ACM (2009)Google Scholar
  26. 26.
    Meikle, L.I., Fleuriot, J.D.: Formalizing Hilbert’s Grundlagen in Isabelle/Isar. In: Basin, D., Wolff, B. (eds.) TPHOLs 2003. LNCS, vol. 2758, pp. 319–334. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  27. 27.
    Narboux, J.: Formalisation et automatisation du raisonnement géométrique en Coq. PhD thesis. Université Paris Sud (2006)Google Scholar
  28. 28.
    Narboux, J.: Mechanical theorem proving in tarski’s geometry. In: Botana, F., Recio, T. (eds.) ADG 2006. LNCS (LNAI), vol. 4869, pp. 139–156. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  29. 29.
    Nipkow, T., Paulson, L.C., Wenzel, M.T.: Isabelle/HOL. LNCS, vol. 2283. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  30. 30.
    von Plato, J.: The axioms of constructive geometry. Annals of Pure and Applied Logic 76 (1995)Google Scholar
  31. 31.
    von Plato, J.: Formalization of Hilbert’s geometry of incidence and parallelism. Synthese 110 (1997)Google Scholar
  32. 32.
    Polonsky, A.: Proofs, Types, and Lambda Calculus. PhD thesis. University of Bergen (2011)Google Scholar
  33. 33.
    Quaife, A.: Automated development of Tarski’s geometry. Journal of Automated Reasoning 5(1) (1989)Google Scholar
  34. 34.
    Schwabhuser, W., Szmielew, W., Tarski, A.: Metamathematische Methoden in der Geometrie. Springer, Berlin (1983)CrossRefzbMATHGoogle Scholar
  35. 35.
    Sutcliffe, G.: The TPTP Problem Library and Associated Infrastructure: The FOF and CNF Parts, v3.5.0. Journal of Automated Reasoning 43(4) (2009)Google Scholar
  36. 36.
    Tarjan, R.E.: Efficiency of a good but not linear set union algorithm. Journal of ACM 22(2) (1975)Google Scholar
  37. 37.
    Tarski, A.: What is elementary geometry? In: The Axiomatic Method, with Special Reference to Geometry and Physics. North-Holland (1959)Google Scholar
  38. 38.
    The Coq development team. The Coq proof assistant reference manual, Version 8.2. TypiCal Project (2009)Google Scholar
  39. 39.
    Trybulec, A.: Mizar. In: Wiedijk, F. (ed.) The Seventeen Provers of the World. LNCS (LNAI), vol. 3600, pp. 20–23. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  40. 40.
    Wenzel, M.T.: Isar - a Generic Interpretative Approach to Readable Formal Proof Documents. In: Bertot, Y., Dowek, G., Hirschowitz, A., Paulin, C., Théry, L. (eds.) TPHOLs 1999. LNCS, vol. 1690, pp. 167–183. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  41. 41.
    Wu, W.-T.: On the decision problem and the mechanization of theorem proving in elementary geometry. Scientia Sinica 21 (1978)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Sana Stojanović
    • 1
  • Vesna Pavlović
    • 1
  • Predrag Janičić
    • 1
  1. 1.Faculty of MathematicsUniversity of BelgradeBelgradeSerbia

Personalised recommendations