Skip to main content

Cancellation Patterns in Automatic Geometric Theorem Proving

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6877))

Abstract

This article is about the equivalence of two seemingly different methods for proving incidence theorems in projective geometry. The first proving method is essentially an algebraic certificate for the non-existence of a counterexample—via biquadratic final polynomials [13]. For the second method the theorems of Ceva and Menelaus are elementary building blocks and are used as faces of an oriented topological 2-cycle, with their geometric structure on the edges identified appropriately. The fact that the cycle finally closes up translates into the proof of the theorem. We start by formalizing both methods. After this we present a bijective translation process that establishes the equivalence of the two methods. The proving methods and the translation process will be illustrated by a (quite well-natured) example. Using our methods one gains additional structural insight in the purely algebraic proofs (biquadratic final polynomials) by reconstructing an underlying topological structure of the proof.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Apel, S.: A comparison of Binomial proofs and Ceva-/Menelaus proofs for real projective incidence theorems, Bachelor Thesis, TU Munich (2009)

    Google Scholar 

  2. Bokowski, J., Richter, J.: On the finding of final polynomials. Europ. J. Combinatorics 11, 21–34 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  3. Crapo, H., Richter-Gebert, J.: Automatic proving of geometric theorems. In: White, N. (ed.) Invariant Methods in Discrete and Computational Geometry, pp. 107–139. Kluwer Academic Publishers, Dordrecht (1995)

    Google Scholar 

  4. Dress, A.W.M., Wenzel, W.: Endliche Matroide mit Koeffizienten. Bayreuth. Math. Schr. 24, 94–123 (1978)

    MATH  Google Scholar 

  5. Dress, A.W.M., Wenzel, W.: Geometric Algebra for Combinatorial Geometries. Adv. in Math. 77, 1–36 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dress, A.W.M., Wenzel, W.: Grassmann-Plücker Relations and Matroids with Coefficients. Adv. in Math. 86, 68–110 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fearnley-Sander, D.: Plane Euclidean Reasoning. In: Wang, D., Yang, L., Gao, X.-S. (eds.) ADG 1998. LNCS (LNAI), vol. 1669, pp. 86–110. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  8. Grünbaum, B., Shephard, G.C.: Ceva, Menelaus, and the Area Principle. Mathematics Magazine 68, 254–268 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  9. Grünbaum, B., Shephard, G.C.: A new Ceva-type theorem. Math. Gazette 80, 492–500 (1996)

    Article  MATH  Google Scholar 

  10. Grünbaum, B., Shephard, G.C.: Ceva, Menelaus, and Selftransversality. Geometriae Dedicata 65, 179–192 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Grünbaum, B., Shephard, G.C.: Some New Transversality Properties. Geometriae Dedicata 71, 179–208 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Maurer, S.B.: Matroid basis graphs I. J. Combin. Theory B 14, 216–240 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  13. Richter-Gebert, J.: Mechanical theorem proving in projective geometry. Annals of Mathematics and Artificial Intelligence 13, 139–172 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  14. Richter-Gebert, J.: On the Realizability Problem of Combinatorial Geometries – Decision Methods, Doktoral Thesis, TU Darmstadt (1992)

    Google Scholar 

  15. Richter-Gebert, J.: Perspective on Projective Geometry, p. 580. Springer, Heidelberg (2011)

    Book  Google Scholar 

  16. Richter-Gebert, J.: Meditations on Ceva’s Theorem. In: Davis, C., Ellers, E. (eds.) The Coxeter Legacy: Reflections and Projections, pp. 227–254. American Mathematical Society, Fields Institute (2006)

    Google Scholar 

  17. Sturmfels, B.: Algorithms in Invariant Theory. Springer, Wien (1993)

    Book  MATH  Google Scholar 

  18. Wenzel, W.: A Group-Theoretic Interpretation of Tutte’s Homotopy Theory. Adv. in Math. 77, 27–75 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wenzel, W.: Maurer’s Homotopy Theory fo Even Δ-Matroids and Related Combinatorial Geometries. J. Combin. Theory A 71, 19–59 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  20. White, N.: The Bracket Ring of Combinatorial Geometry I. Transactions AMS 202, 79–95 (1975)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Apel, S., Richter-Gebert, J. (2011). Cancellation Patterns in Automatic Geometric Theorem Proving. In: Schreck, P., Narboux, J., Richter-Gebert, J. (eds) Automated Deduction in Geometry. ADG 2010. Lecture Notes in Computer Science(), vol 6877. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25070-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25070-5_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25069-9

  • Online ISBN: 978-3-642-25070-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics