• Philipp Zimmer
  • Jens Ulrich Rüffer


Die im englischen Sprachraum gebräuchliche Bezeichnung „cancer related fatigue“ (CRF) ist weitaus zutreffender als die früher im deutschen Sprachraum genutzten Begriffe „Müdigkeit“ und „Erschöpfung“. Definitionsgemäß ist das allgemeine Fatigue-Syndrom von dem Krebs- bzw. dem Krebstherapie-assoziierten Fatigue-Syndrom abzugrenzen, wenngleich Parallelen zu physischer und mentaler Erschöpfungsausprägung zu erkennen sind. Die folgenden Ausführungen beziehen sich auf die krebsinduzierte Erschöpfung und werden daher mit der Abkürzung CRF benannt.


  1. Agteresch HJ, Dagnelie PC, van der Gaast A, Stijnen T, Wilson JH (2000) Randomized clinical trial of adenosine 5′-triphosphate in patients with advanced non-small-cell lung cancer. Journal of the National Cancer Institute 92(4):321–8Google Scholar
  2. Aguilera G (1994) Regulation of pituitary ACTH secretion during chronic stress. Front Neuroendocrinol 15:321–350Google Scholar
  3. Barsevick A, Frost M, Zwinderman A, Hall P, Halyard M; GENEQOL Consortium (2010) I’m so tired: biological and genetic mechanisms of cancer-related fatigue. Qual Life Res 19(10):1419–1427Google Scholar
  4. Blackshaw LA, Grundy D (1993a) Effects of 5-hydroxytryptamine on discharge of vagal mucosal afferent fibres from the upper gastrointestinal tract of the ferret. J Auton Nerv Syst 45:41–50Google Scholar
  5. Blackshaw LA, Grundy D (1993b) Effects of 5-hydroxytryptamine (5-HT) on the discharge of vagal mechanoreceptors and motility in the upper gastrointestinal tract of the ferret. J Auton Nerv Syst 45:51–59Google Scholar
  6. Bower JE (2008) Behavioral symptoms in patients with breast cancer and survivors. J Clin Oncol 26(5):768–777Google Scholar
  7. Bower JE, Ganz PA, Aziz N, Fahey JL (2002) Fatigue and proinflammatory cytokine activity in breast cancer survivors. Psychosomatic Medicine 64(4):604–11Google Scholar
  8. Bower JE, Ganz PA, Aziz N, Fahey JL, Cole SW, Bower JE, Ganz PA, Aziz N et al. (2003) T-cell homeostasis in breast cancer survivors with persistent fatigue. Journal of the National CancerInstitute 95(15):1165–1168Google Scholar
  9. Bower JE, Ganz PA, Desmond KA (2000) Fatigue in breast cancer survivors: Occurrence, correlates, and impact on quality of life. J Clin Oncol 18:743–753Google Scholar
  10. Brenu EW, van Driel ML, Staines DR, Ashton KJ, Ramos SB, Keane J, Klimas NG, Marshall-Gradisnik SM (2011) Immunological abnormalities as potential biomarkers in Chronic Fatigue Syndrome/Myalgic Encephalomyelitis. J Transl Med 9:81Google Scholar
  11. Bruera E, Driver L, Barnes EA, Willey J, Shen L, Palmer JL et al. (2003) Patient-controlled methylphenidate for the management of fatigue in patients with advanced cancer: a preliminary report. J Clin Oncol 21(23):4439–4443Google Scholar
  12. Cella D, Davis K, Breitbart W et al. (2001) Cancer-related fatigue: Prevalence of proposed diagnostic criteria in a United States sample of cancer survivors. J Clin Oncol 19:3385–3391Google Scholar
  13. Chappell PB, Smith MA, Kilts CD et al. (1986) Alterations in corticotropinreleasing factor-like immunoreactivity in discrete rat brain regions after acute and chronic stress. J Neurosci 6:2908–2914Google Scholar
  14. Chen R, Liang FX, Moriya J, Yamakawa J, Sumino H, Kanda T, Takahashi T (2008) Chronic fatigue syndrome and the central nervous system. J Int Med Res 36(5):867–874, ReviewGoogle Scholar
  15. Cleare AJ (2003) The neuroendocrinology of chronic fatigue syndrome. Endocr Rev 24:236–252Google Scholar
  16. Cleare AJ, Miell J, Heap E et al. (2001) Hypothalamo-pituitary-adrenal axis dysfunction in chronic fatigue syndrome, and the effects of low-dose hydrocortisone therapy. J Clin Endocrinol Metab 86:3545–3554Google Scholar
  17. Collado-Hidalgo A, Bower JE, Ganz PA, Irwin MR, Cole SW (2008) Cytokine gene polymorphisms and fatigue in breast cancer survivors: Early findings. Brain, Behavior, and Immunity 22:1197–1200Google Scholar
  18. Cramp F, Daniel J (2008) Exercise for the management of cancer-related fatigue in adults. Cochrane Database Syst Rev 16(2):CD006145Google Scholar
  19. D’Andrea MD (2005) Use of Antioxidants During Chemotherapy and Radiotherapy Should Be Avoided. Cancer Journal for Clinicians 55:319–321Google Scholar
  20. Duval F, Mokrani MC, Monreal-Ortiz JA et al. (2006) Cortisol hypersecretion in unipolar major depression with melancholic and psychotic features: Dopaminergic, noradrenergic and thyroid correlates. Psychoneuroendocrinology 31:876–888Google Scholar
  21. Ek M, Kurosawa M, Lundeberg T et al. (1998) Activation of vagal afferents after intravenous injection of interleukin-1β: Role of endogenous prostaglandins. J Neurosci 18:9471–9479Google Scholar
  22. Febbraio MA, Steensberg A, Keller C, Starkie RL, Nielsen HB, Krustrup P et al. (2003) Glucose ingestion attenuates interleukin-6 release from contracting skeletal muscle in humans. Journal of Physiology 549(2):607–612Google Scholar
  23. Fernstrom JD, Fernstrom MH (2006) Exercise, serum free tryptophan, and central fatigue. J Nutr 136, Suppl):553S–559SGoogle Scholar
  24. Forsyth LM, Preuss HG, MacDowell AL et al. (1999) Therapeutic effects of oral NADH on the symptoms of patients with chronic fatigue syndrome. Ann Allergy Asthma Immunol 82:185–191Google Scholar
  25. Gilliam LA, St Clair DK (2011) Chemotherapy-Induced Weakness and Fatigue in Skeletal Muscle: The Role of Oxidative Stress. Antioxid Redox Signal 15: 2543–2563Google Scholar
  26. Grote HE, Hannan AJ (2007) Regulators of adult neurogenesis in the healthy and diseased brain. Clin Exp Pharmacol Physiol 34(5–6):533–545Google Scholar
  27. Higginson IJ, Armes J, Krishnasamy M (2004) Introduction, in fatigue in cancer. In: Armes J, Krishnasamy M, Higginson IJ (eds) Fatigue in Cancer. Oxford University Press, Oxford; xvii–xxiGoogle Scholar
  28. Imaki T, Nahan J-L, Rivier C et al. (1991) Differential regulation of corticotrophin- releasing factor mRNA in rat brain regions by glucocorticoids and stress. J Neurosci 11:585–599Google Scholar
  29. Konsman JP, Parnet P, Dantzer R (2002) Cytokine-induced sickness behaviour: Mechanisms and implications. Trends Neurosci 25:154–159Google Scholar
  30. Kurzrock R (2001) The role of cytokines in cancer-related fatigue. Cancer 92(6 Suppl):1684–1688Google Scholar
  31. Lotfi-Jam K, Carey M, Jefford M, Schofield P, Charleson C, Aranda S (2008) Nonpharmacologic strategies for managing common chemotherapy adverse effects: a systematic review. J Clin Oncol 26(34):5618–5629 [Epub 2008 Nov 3rd. Review]Google Scholar
  32. Luebbert K, Dahme B, Hasenbring M (2001) The effectiveness of relaxation training in reducing treatment-related symptoms and improving emotional adjustment in acute non-surgical cancer treatment: a meta-analytical review. Psychooncology 10(6):490–502Google Scholar
  33. Maes M, Kubera M, Uytterhoeven M, Vrydags N, Bosmans E (2011) Increased plasma peroxides as a marker of oxidative stress in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Med Sci Monit 17(4):SC11–15Google Scholar
  34. Maes M, Lin A, Bonaccorso S et al. (1998) Increased 24-hour urinary cortisol excretion in patients with post-traumatic stress disorder and patients with major depression, but not in patients with fibromyalgia. Acta Psychiatr Scand 98:328–335Google Scholar
  35. McCully KK, Natelson BH, Iotti S et al. (1996) Reduced oxidative muscle metabolism in chronic fatigue syndrome. Muscle Nerve 19:621–625Google Scholar
  36. McNeely ML, Courneya KS (2010) Exercise programs for cancer-related fatigue: evidence and clinical guidelines. J Natl Compr Canc Netw 8(8):945–953Google Scholar
  37. McNeely ML, Peddle CJ, Parliament M, Courneya KS (2006) Cancer rehabilitation: recommendations for integrating exercise programming in the clinical practice setting. Curr Cancer Therapy Rev 2:351–360Google Scholar
  38. Meyers CA, Albitar M, Estey E (2005) Cognitive impairment, fatigue, and cytokine levels in patients with acute myelogenous leukemia or myelodysplastic syndrome. Cancer 104(4):788–793Google Scholar
  39. Morrow GR, Andrews PLR, Hickok JT et al. (2002) Fatigue associated with cancer and its treatment. Support Care Cancer 10:389–398Google Scholar
  40. Morrow GR, Hickok JT, Roscoe JA et al. (2003) Differential effects of paroxetine on fatigue and depression: A randomized, double-blind trial from the University of Rochester Cancer Center Community Clinical Oncology Program. J Clin Oncol 21:4635–4641Google Scholar
  41. Nakajima K, Takeoka M, Mori M, Hashimoto S, Sakurai A, Nose H, Higuchi K, Itano N, Shiohara M, Oh T, Taniguchi S (2010) Exercise effects on methylation of ASC gene. Int J Sports Med 31(9):671–675Google Scholar
  42. Newsholme EA (1986) Application of principles of metabolic control to the problem of metabolic limitations in sprinting, middle-distance, and marathon running. Int J Sports Med 7, Suppl 1:66–70Google Scholar
  43. Newsholme EA, Blomstrand E (1995) Tryptophan, 5-hydroxytryptamine and a possible explanation for central fatigue. Adv Exp Med Biol 384:315–320Google Scholar
  44. Pastoris O, Aquilani R, Foppa P et al. (1997) Altered muscle energy metabolism in post-absorptive patients with chronic renal failure. Scand J Urol Nephrol 31:281–287Google Scholar
  45. Pedersen BK (2006) The anti-inflammatory effect of exercise: Its role in diabetes and cardiovascular diseasecontrol. Essays in Biochemistry 42:105–117Google Scholar
  46. Pedersen BK, Fischer CP (2007) Physiological roles of muscle-derived interleukin-6 in response to exercise. Current Opinion in Clinical Nutrition and Metabolic Care 10(3):265–271Google Scholar
  47. Rich TA (2007) Symptom clusters in cancer patients and their relation to EGFR ligand modulation of the circadian axis. The Journal of Supportive Oncology 5(4):167–174Google Scholar
  48. Roscoe JA, Morrow GR, Hickok JT et al. (2005) Effect of paroxetine hydrochloride (Paxil) on fatigue and depression in breast cancer patients receiving chemotherapy. Breast Cancer Res Treat 89:243–249Google Scholar
  49. Ryan JL, Carroll JK, Ryan EP, Mustian KM, Fiscella K, Morrow GR (2007) Mechanisms of cancerrelated fatigue. The Oncologist 12, Suppl 1:22–34Google Scholar
  50. Schütz F (2008) Fatigue – ein unterschätztes Symptom bei Krebs. Gynäkologe 41:603–606Google Scholar
  51. Seruga B, Zhang H, Bernstein LJ, Tannock IF (2008) Cytokines and their relationship to the symptoms and outcome of cancer. Nat Rev Cancer 8(11):887–899Google Scholar
  52. Seyidova-Khoshknabi D, Davis MP, Walsh D (2011) Review article: a systematic review of cancer-related fatigue measurement questionnaires. Am J Hosp Palliat Care 28(2):119–119 [Epub 2010 Nov 4th]Google Scholar
  53. Simone CB 2nd, Simone NL, Simone V, Simone CB (2007) Antioxidants and other nutrients do not interfere with chemotherapy or radiation therapy and can increase kill and increase survival, part 1. Altern Ther Health Med 13(1):22–28. Review.Google Scholar
  54. Speck RM, Courneya KS, Mâsse LC, Duval S, Schmitz KH (2010) An update of controlled physical activity trials in cancer survivors: a systematic review and meta-analysis. J Cancer Surviv 4(2):87–100 [Epub 2010 Jan 6]Google Scholar
  55. van Waart H, Stuiver MM, van Harten WH, Sonke GS, Aaronson NK (2010) Design of the Physical exercise during Adjuvant Chemotherapy Effectiveness Study (PACES): a randomized controlled trial to evaluate effectiveness and cost-effectiveness of physical exercise in improving physical fitness and reducing fatigue. BMC Cancer 10:673Google Scholar
  56. Velthuis MJ, May AM, Koppejan-Rensenbrink RA, Gijsen BC, van Breda E, de Wit GA, Schröder CD, Monninkhof EM, Lindeman E, van der Wall E, Peeters PH (2010) Physical Activity during Cancer Treatment (PACT) Study: design of a randomised clinical trial. BMC Cancer 10:272Google Scholar
  57. Walsh NP, Gleeson M, Pyne DB, Nieman DC, Dhabhar FS, Shephard RJ, Oliver SJ, Bermon S, Kajeniene A. Position statement (2011a) Part two: Maintaining immune health. Exerc Immunol Rev 17:64–103. ReviewGoogle Scholar
  58. Walsh NP, Gleeson M, Shephard RJ, Gleeson M, Woods JA, Bishop NC, Fleshner M, Green C, Pedersen BK, Hoffman-Goetz L, Rogers CJ, Northoff H, Abbasi A, Simon P (2011b) Position statement. Part one: Immune function and exercise. Exerc Immunol Rev 17:6–63. ReviewGoogle Scholar
  59. Wichers M, Maes M (2002) The psychoneuroimmuno-pathophysiology of cytokine-induced depression in humans. Int J Neuropsychopharmacol 5:375–388Google Scholar
  60. Wood LJ, Nail LM, Winters KA (2009) Does muscle-derived interleukin-6 mediate some of the beneficial effects of exercise on cancer treatment-related fatigue? Oncol Nurs Forum 36(5):519–524Google Scholar
  61. Zhu CB, Blakely RD, Hewlett WA (2006) The proinflammatory cytokines interleukin-1beta and tumor necrosis factor-alpha activate serotonin transporters. Neuropsychopharmacology 31:2121–2131Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Philipp Zimmer
    • 1
  • Jens Ulrich Rüffer
    • 2
  1. 1.Institut für Kreislaufforschung und Sportmedizin Abteilung für molekulare und zelluläre SportmedizinDeutsche Sporthochschule KölnKölnDeutschland
  2. 2.Deutsche Fatigue GesellschaftKölnDeutschland

Personalised recommendations