Oceanic Net Primary Production

  • Toby K. Westberry
  • Michael J. Behrenfeld
Part of the Springer Remote Sensing/Photogrammetry book series (SPRINGERREMO)


Production of organic matter in the ocean is a fundamental process for biogeochemical cycling of elements (carbon, nitrogen, etc.) as well as for providing the foundation of nearly all marine food webs. Satellite remote sensing provides the only means of estimating this rate at basin and global scales. A variety of satellite-based models for estimation of net primary production exist spanning a wide range of complexity. Results from applying these models to the satellite record have yielded valuable insight on the ocean’s role in the earth climate system and the coupling of physics and biology. A vision for the next generation of NPP models aimed at utilizing existing tools and anticipated improvements in future satellite ocean color missions is also given.


Gross Primary Production Mixed Layer Depth Ocean Color Assimilation Efficiency Photosynthetically Available Radiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alvain S, Moulin C, Dandonneau Y, Loisel H (2008) Seasonal distribution and succession of dominant phytoplankton groups in the global ocean: a satellite view. Glob Biogeochem Cycles 22(3). doi: 10.1029/2007gb003154
  2. Antoine D, Morel A (1996) Oceanic primary production, 1, Adaptation of a spectral light-photosynthesis model in view of application to satellite chlorophyll observations. Glob Biogeochem Cycles 10:43–55Google Scholar
  3. Antoine D, Morel A, Gordon HR, Banzon VF, Evans RH (2005) Bridging ocean color observations of the 1980s and 2000s in search of long-term trends. J Geophys Res 110(C6). doi: 10.1029/2004jc002620
  4. Armstrong RA (2006) Optimality-based modeling of nitrogen allocation and photo acclimation in photosynthesis. Deep-Sea Res Part II-Topical Stud Oceanogr 53(5–7):513–531. doi: 10.1016/j.dsr2.2006.01.020 CrossRefGoogle Scholar
  5. Arndt DS, Baringer MO, Johnson MR (2010) State of the climate in 2009. Bull Am Meteorol Soc 91(7):s1-s222. doi: 10.1175/BAMS-91-7-StateoftheClimate Google Scholar
  6. Arrigo KR, van Dijken G, Pabi S (2008a) Impact of a shrinking arctic ice cover on marine primary production. Geophys Res Lett 35(19):L19603CrossRefGoogle Scholar
  7. Arrigo KR, van Dijken GL, Bushinsky S (2008b) Primary production in the southern ocean, 1997–2006. J Geophys Res 113(C8):C08004Google Scholar
  8. Balch WM, Gordon HR, Bowler BC, Drapeau DT, Booth ES (2005) Calcium carbonate measurements in the surface global ocean based on moderate-resolution imaging spectroradiometer data. J Geophys Res 110(C7):C07001Google Scholar
  9. Barber RT, Chavez FP (1983) Biological consequences of el-nino. Science 222(4629):1203–1210. doi: 10.1126/science.222.4629.1203 CrossRefGoogle Scholar
  10. Barber RT, Hilting AK (2002) History of the study of plankton productivity. In: Williams PJlB, Thomas DN, Reynolds CS (eds) Phytoplankton productivity. Blackwell Science Ltd, pp 16–43. doi: 10.1002/9780470995204.ch2
  11. Behrenfeld MJ (2010) Abandoning sverdrup critical depth hypothesis on phytoplankton blooms. Ecology 91(4):977–989. doi: 10.1890/09-1207.1 CrossRefGoogle Scholar
  12. Behrenfeld MJ, Boss E, Siegel DA, Shea DM (2005) Carbon-based ocean productivity and phytoplankton physiology from space. Glob Biogeochem Cycles 19(1):1–14. doi: 10.1029/2004GB002299 CrossRefGoogle Scholar
  13. Behrenfeld MJ, Falkowski PG (1997a) A consumer’’ guide to phytoplankton primary productivity models. Limnol Oceanogr 42(7):1479–1491CrossRefGoogle Scholar
  14. Behrenfeld MJ, Falkowski PG (1997b) Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol Oceanogr 42(1):1–20CrossRefGoogle Scholar
  15. Behrenfeld MJ, Halsey KH, Milligan AJ (2008) Evolved physiological responses of phytoplankton to their integrated growth environment. Philos Trans R Soc Lond B 363:2687–2703Google Scholar
  16. Behrenfeld MJ, Milligan AJ (2013) Photophysiological Expressions of Iron Stress in Phytoplankton. Annu Rev Mar Sci 5:217–246CrossRefGoogle Scholar
  17. Behrenfeld MJ, O’’alley RT, Siegel DA, McClain CR, Sarmiento JL, Feldman GC, Milligan AJ, Falkowski PG, Letelier RM, Boss ES (2006a) Climate-driven trends in contemporary ocean productivity. Nature 444(7120):752–755CrossRefGoogle Scholar
  18. Behrenfeld MJ, Randerson JT, McClain CR, Feldman GC, Los SO, Tucker CJ, Falkowski PG, Field CB, Frouin R, Esaias WE, Kolber DD, Pollack NH (2001) Biospheric primary production during an enso transition. Science 291(5513):2594–2597CrossRefGoogle Scholar
  19. Behrenfeld MJ, Westberry TK, Boss ES, O’’alley RT, Siegel DA, Wiggert JD, Franz BA, McClain CR, Feldman GC, Doney SC, Moore JK, Dall’’lmo G, Milligan AJ, Lima I, Mahowald N (2009) Satellite-detected fluorescence reveals global physiology of ocean phytoplankton. Biogeosciences 6:779–794CrossRefGoogle Scholar
  20. Behrenfeld MJ, Worthington K, Sherrell RM, Chavez FP, Strutton P, McPhaden M, Shea DM (2006b) Controls on tropical Pacific ocean productivity revealed through nutrient stress diagnostics. Nature 442(7106):1025–1028CrossRefGoogle Scholar
  21. Blunden J, Arndt DS, Baringer MO (2011) State of the climate in 2010. Bull Am Meteorol Soc 92(6):S1-S236. doi: 10.1175/1520-0477-92.6.s1
  22. Boss E, Behrenfeld M (2010) In situ evaluation of the initiation of the North Atlantic phytoplankton bloom. Geophys Res Lett 37. doi: 10.1029/2010gl044174
  23. Bracher A, Vountas M, Dinter T, Burrows JP, Rottgers R, Peeken I (2009) Quantitative observation of cyanobacteria and diatoms from space using phytodoas on sciamachy data. Biogeosciences 6(5):751–764CrossRefGoogle Scholar
  24. Bricaud A, Babin M, Morel A, Claustre H (1995) Variability in the chlorophyll-specific absorption coefficients for natural phytoplankton: Analysis and parameterization. J Geophys Res 100:13,321–13,332Google Scholar
  25. Bricaud A, Claustre H, Ras J, Oubelkheir K (2004) Natural variability of phytoplanktonic absorption in oceanic waters: Influence of the size structure of algal populations. J Geophys Res 109. doi:  10.1029/2004JC002419
  26. Bricaud A, Morel A, Babin M, Allalli K, Claustre H (1998) Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: Analysis and implications for bio-optical models. J Geophys Res 103:31,033–31,044Google Scholar
  27. Buesseler KO, Antia AN, Chen M, Fowler SW, Gardner WD, Gustafsson O, Harada K, Michaels AF, van der Loeff’’ MR, Sarin M, Steinberg DK, Trull T (2007) An assessment of the use of sediment traps for estimating upper ocean particle fluxes. J Mar Res 65(3):345–416CrossRefGoogle Scholar
  28. Campbell J, Antoine D, Armstrong R, Arrigo K, Balch W, Barber R, Behrenfeld M, Bidigare R, Bishop J, Carr ME, Esaias W, Falkowski P, Hoepffner N, Iverson R, Kiefer D, Lohrenz S, Marra J, Morel A, Ryan J, Vedernikov V, Waters K, Yentsch C, Yoder J (2002) Comparison of algorithms for estimating ocean primary production from surface chlorophyll, temperature, and irradiance. Glob Biogeochem Cycles 16(3):1035CrossRefGoogle Scholar
  29. Carr ME, Friedrichs MAM, Schmeltz M, Aita MN, Antoine D, Arrigo KR, Asanuma I, Aumont O, Barber R, Behrenfeld M, Bidigare R, Buitenhuis ET, Campbell J, Ciotti A, Dierssen H, Dowell M, Dunne J, Esaias W, Gentili B, Gregg W, Groom S, Hoepffner N, Ishizaka J, Kameda T, Le Quere C, Lohrenz S, Marra J, Melin F, Moore K, Morel A, Reddy TE, Ryan J, Scardi M, Smyth T, Turpie K, Tilstone G, Waters K, Yamanaka Y (2006) A comparison of global estimates of marine primary production from ocean color. Deep-Sea Res Part II-Topical Stud Oceanogr 53(5–7):741–770CrossRefGoogle Scholar
  30. Castro-Morales K, Kaiser J (2012) Using dissolved oxygen concentrations to determine mixed layer depths in the bellingshausen sea. Ocean Sci 8(1):1–10. doi: 10.5194/os-8-1-2012 CrossRefGoogle Scholar
  31. Chassot E, Bonhommeau S, Dulvy NK, Melin F, Watson R, Gascuel D, Le Pape O (2010) Global marine primary production constrains fisheries catches. Ecol Lett 13:495–505. doi: 10.1111/j.1461-0248.2010.01443.x CrossRefGoogle Scholar
  32. Chavez FP, Messie M, Pennington JT (2011) Marine primary production in relation to climate variability and change. In: Carlson CA, Giovannoni SJ (eds) Annu Rev Mar Sci 3:227–260. doi: 10.1146/annurev.marine.010908.163917
  33. Chavez FP, Pennington JT, Castro CG, Ryan JP, Michisaki RP, Schlining B, Walz P, Buck KR, McFadyen A, Collins CA (2002) Biological and chemical consequences of the 1997–1998 el nino in central california waters. Prog Oceanogr 54(1–4):205–232. doi: 10.1016/s0079-6611(02)00050-2 CrossRefGoogle Scholar
  34. Churnside JH, Wilson JJ (2001) Airborne lidar for fisheries applications. Opt Eng 40(3):406–414. doi: 10.1117/1.1348000 CrossRefGoogle Scholar
  35. Ciotti AM, Lewis MR, Cullen JJ (2002) Assessment of the relationships between dominant cell size in natural phytoplankton communities and the spectral shape of the absorption coefficient. Limnol Oceanogr 47(2):404–417CrossRefGoogle Scholar
  36. Clancy RM, Sadler WD (1992) The fleet numerical oceanography center suite of oceanographic models and products. Weather Forecast 7(2):307–327CrossRefGoogle Scholar
  37. Clarke GL, Ewing GC, Lorenzen CJ (1970) Spectra of backscattered light from the sea obtained from aircraft as a measure of chlorophyll concentration. Science 167(3921):1119–1121CrossRefGoogle Scholar
  38. D’’saro EA (2003) Performance of autonomous lagrangian floats. J Atmos Ocean Technol 20(6):896–911CrossRefGoogle Scholar
  39. Dave AC, Lozier MS (2010) Local stratification control of marine productivity in the subtropical north pacific. J Geophys Res 115. doi: 10.1029/2010jc006507
  40. Devred E, Sathyendranath S, Stuart V, Maass H, Ulloa O, Platt T (2006) A two-component model of phytoplankton absorption in the open ocean: Theory and applications. J Geophys Res 111(C3). doi: C03011 10.1029/2005jc002880
  41. Dunne JP, Armstrong RA, Gnanadesikan A, Sarmiento JL (2005) Empirical and mechanistic models for the particle export ratio. Glob Biogeochem Cycles 19(4). doi: 10.1029/2004gb002390
  42. Eppley RW (1972) Temperature and phytoplankton growth in the sea. Fish Bull 70(4):1063–1085Google Scholar
  43. Esaias WE (1996) Algorithm theoretical basis document for modis product mod-27 ocean primary productivity. Goddard Space Flight CenterGoogle Scholar
  44. Escoubas JM, Lomas M, LaRoche J, Falkowski PG (1995) Light intensity regulation of cab gene transcription is signaled by the redox state of the plastoquinone pool. Proc Natl Acad Sci USA 92(22):10237–10241CrossRefGoogle Scholar
  45. Falkowski PG, Barber RT, Smetacek V (1998a) Biogeochemical controls and feedbacks on ocean primary production. Science 281(5374):200–206CrossRefGoogle Scholar
  46. Falkowski PG, Behrenfeld MJ, Esaias WE, Balch WM, Campbell JW, Iverson RL, Kiefer DA, Morel A, Yoder JA (1998b) Satellite primary productivity data and algorithm development: A science plan for mission to planet earth. NASA Technical Memo 1998-104566, vol 42. NASA Goddard Space Flight Center, Greenbelt, MarylandGoogle Scholar
  47. Falkowski PG, Laroche J (1991) Acclimation to spectral irradiance in algae. J Phycol 27(1):8–14. doi: 10.1111/j.0022-3646.1991.00008.x CrossRefGoogle Scholar
  48. Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281(5374):237–240CrossRefGoogle Scholar
  49. Friedland KD, Stock C, Drinkwater KF, Link JS, Leaf RT, Shank BV, Rose JM, Pilskaln CH, Fogarty MJ (2012) Pathways between primary production and fisheries yields of large marine ecosystems. Plos One 7(1). doi: 10.1371/journal.pone.0028945
  50. Friedrichs MAM, Carr ME, Barber RT, Scardi M, Antoine D, Armstrong RA, Asanuma I, Behrenfeld MJ, Buitenhuis ET, Chai F, Christian JR, Ciotti AM, Doney SC, Dowell M, Dunne J, Gentili B, Gregg W, Hoepffner N, Ishizaka J, Kameda T, Lima I, Marra J, Melin F, Moore JK, Morel A, O’’alley RT, O’’eilly J, Saba VS, Schmeltz M, Smyth TJ, Tjiputra J, Waters K, Westberry TK, Winguth A (2009) Assessing the uncertainties of model estimates of primary productivity in the tropical Pacific Ocean. J Mar Syst 76(1–2):113–133. doi: 10.1016/j.jmarsys.2008.05.010 CrossRefGoogle Scholar
  51. Friend AD, Geider RJ, Behrenfeld MJ, Still CJ (2009) Photosynthesis in global-scale models. In: Laisk A, Nedbal L, Govindjee G (eds) Advances in photosynthesis and respiration vol 29. Springer, The Netherlands, pp 465–497. doi: 10.1007/978-1-4020-9237-4
  52. Gordon HR, Clark DK, Mueller JL, Hovis WA (1980) Phytoplankton pigments from the nimbus-7 coastal zone color scanner: comparisons with surface measurements. Science 210(4465):63–66CrossRefGoogle Scholar
  53. Gruber N, Doney SC, Emerson SR, Gilbert D, Kobayashi T, Kortzinger A, Johnson GC, Johnson KJ, Riser SC, Ulloa O (2007) The argo-oxygen program. Argo Steering CommitteeGoogle Scholar
  54. Halsey KH, Milligan AJ, Behrenfeld MJ (2010) Physiological optimization underlies growth rate-independent chlorophyll-specific gross and net primary production. Photosynth Res 103(2):125–137CrossRefGoogle Scholar
  55. Henson SA, Raitsos D, Dunne JP, McQuatters-Gollop A (2009) Decadal variability in biogeochemical models: Comparison with a 50-year ocean colour dataset. Geophys Res Lett 36. doi: 10.1029/2009gl040874
  56. Hirata T, Aiken J, Hardman-Mountford N, Smyth TJ, Barlow RG (2008) An absorption model to determine phytoplankton size classes from satellite ocean colour. Remote Sens Environ 112(6):3153–3159. doi: 10.1016/j.rse.2008.03.011 CrossRefGoogle Scholar
  57. Hovis WA, Clark DK, Anderson F, Austin RW, Wilson WH, Baker ET, Ball D, Gordon HR, Mueller JL, El-Sayed SZ, Sturm B, Wrigley RC, Yentsch CS (1980) Nimbus-7 coastal zone color scanner—system description and initial imagery. Science 210(4465):60–63CrossRefGoogle Scholar
  58. Howard KL, Yoder JA (1997) Contribution of the sub-tropical oceans to global primary production. In: Liu C-T (ed) Proceedings of cospar colloquium on space remote sensing of subtropical oceans. New York, pp 157–168Google Scholar
  59. Johnson KS, Riser SC, Karl DM (2010) Nitrate supply from deep to near-surface waters of the north pacific subtropical gyre. Nature 465(7301):1062–1065. doi: 10.1038/nature09170 CrossRefGoogle Scholar
  60. Kostadinov TS, Siegel DA, Maritorena S (2009) Retrieval of the particle size distribution from satellite ocean color observations. J Geophys Res 114. doi: 10.1029/2009jc005303
  61. Kostadinov TS, Siegel DA, Maritorena S (2010) Global variability of phytoplankton functional types from space: Assessment via the particle size distribution. Biogeosciences 7(10):3239–3257. doi: 10.5194/bg-7-3239-2010 CrossRefGoogle Scholar
  62. Laws EA, Bannister TT (1980) Nutrient-limited and light-limited growth of thalassiosira-fluviatilis in continuous culture, with implications for phytoplankton growth in the ocean. Limnol Oceanogr 25(3):457–473CrossRefGoogle Scholar
  63. Laws EA, Falkowski PG, Smith WO, Ducklow H, McCarthy JJ (2000) Temperature effects on export production in the open ocean. Glob Biogeochem Cycles 14(4):1231–1246CrossRefGoogle Scholar
  64. Lee ZP, Carder KL, Arnone RA (2002) Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters. Appl Opt 41(27):5755–5772Google Scholar
  65. Lee ZP, Carder KL, Marra J, Steward RG, Perry MJ (1996) Estimating primary production at depth from remote sensing. Appl Optics 35(3):463–474CrossRefGoogle Scholar
  66. Loisel H, Duforet L, Dessailly D, Chami M, Dubuisson P (2008) Investigation of the variations in the water leaving polarized reflectance from the polder satellite data over two biogeochemical contrasted oceanic areas. Opt Express 16(17):12905–12918. doi: 10.1364/oe.16.012905 CrossRefGoogle Scholar
  67. Longhurst A, Sathyendranath S, Platt T, Caverhill C (1995) An estimate of global primary production in the ocean from satellite radiometer data. J Plankton Res 17:1245–1271CrossRefGoogle Scholar
  68. Lozier MS, Dave AC, Palter JB, Gerber LM, Barber RT (2011) On the relationship between stratification and primary productivity in the north atlantic. Geophys Res Lett 38. doi: 10.1029/2011gl049414
  69. Luz B, Barkan E (2009) Net and gross oxygen production from o-2/ar, o-17/o-16 and o-18/o-16 ratios. Aquat Microb Ecol 56(2–3):133–145. doi: 10.3354/ame01296 CrossRefGoogle Scholar
  70. Marra J (2009) Net and gross productivity: weighing in with (14)c. Aquat Microb Ecol 56(2–3):123–131. doi: 10.3354/ame01306 CrossRefGoogle Scholar
  71. Martinez E, Antoine D, D’’rtenzio F, Gentili B (2009) Climate-driven basin-scale decadal oscillations of oceanic phytoplankton. Science 326(5957):1253–1256. doi: 10.1126/science.1177012 CrossRefGoogle Scholar
  72. Milutinovic S, Bertino L (2011) Assessment and propagation of uncertainties in input terms through an ocean-color-based model of primary productivity. Remote Sens Environ 115(8):1906–1917. doi: 10.1016/j.rse.2011.03.013 CrossRefGoogle Scholar
  73. Morel A (1991) Light and marine photosynthesis: a spectral model with geochemical and climatological implications 26:263–306Google Scholar
  74. Moseley JL, Allinger T, Herzog S, Hoerth P, Wehinger E, Merchant S, Hippler M (2002) Adaptation to Fe-deficiency requires remodeling of the photosynthetic apparatus. Embo J 21(24):6709–6720Google Scholar
  75. Parkhill JP, Maillet G, Cullen JJ (2001) Fluorescence-based maximal quantum yield for psii as a diagnostic of nutrient stress. J Phycol 37(4):517–529CrossRefGoogle Scholar
  76. Pauly D, Christensen V (1995) Primary production required to sustain global fisheries. Nature 374:255–257CrossRefGoogle Scholar
  77. Potter CS, Randerson JT, Field CB, Matson PA, Vitousek PM, Mooney HA, Klooster SA (1993) Terrestrial ecosystem production - a process model-based on global satellite and surface data. Glob Biogeochem Cycles 7(4):811–841. doi: 10.1029/93gb02725 CrossRefGoogle Scholar
  78. Quay PD, Peacock C, Bjorkman K, Karl DM (2010) Measuring primary production rates in the ocean: Enigmatic results between incubation and non-incubation methods at station aloha. Glob Biogeochem Cycles 24. doi: 10.1029/2009gb003665
  79. Roemmich D, Owens WB (2000) The Argo project: global ocean observations for understanding and prediction of climate variability. Oceanography 13(2):45–50CrossRefGoogle Scholar
  80. Ryther JH (1969) Photosynthesis and fish production in sea. Science 166(3901):72–000. doi: 10.1126/science.166.3901.72 CrossRefGoogle Scholar
  81. Ryther JH, Yentsch CS (1957) The estimation of phytoplankton production in the ocean from chlorophyll and light data. Limnol Oceanogr 2:281–286Google Scholar
  82. Saba VS, Friedrichs MAM, Antoine D, Armstrong RA, Asanuma I, Behrenfeld MJ, Ciotti AM, Dowell M, Hoepffner N, Hyde KJW, Ishizaka J, Kameda T, Marra J, Melin F, Morel A, O’’eilly J, Scardi M, Smith WO, Smyth TJ, Tang S, Uitz J, Waters K, Westberry TK (2011) An evaluation of ocean color model estimates of marine primary productivity in coastal and pelagic regions across the globe. Biogeosciences 8(2):489–503. doi: 10.5194/bg-8-489-2011 CrossRefGoogle Scholar
  83. Saba VS, Friedrichs MAM, Carr ME, Antoine D, Armstrong RA, Asanuma I, Aumont O, Bates NR, Behrenfeld MJ, Bennington V, Bopp L, Bruggeman J, Buitenhuis ET, Church MJ, Ciotti AM, Doney SC, Dowell M, Dunne J, Dutkiewicz S, Gregg W, Hoepffner N, Hyde KJW, Ishizaka J, Kameda T, Karl DM, Lima I, Lomas MW, Marra J, McKinley GA, Melin F, Moore JK, Morel A, O’’eilly J, Salihoglu B, Scardi M, Smyth TJ, Tang SL, Tjiputra J, Uitz J, Vichi M, Waters K, Westberry TK, Yool A (2010) Challenges of modeling depth-integrated marine primary productivity over multiple decades: a case study at bats and hot. Glob Biogeochem Cycles 24. doi: 10.1029/2009gb003655
  84. Sathyendranath S, Longhurst A, Caverhill CM, Platt T (1995) Regionally and seasonally differentiated primary production in the North Atlantic. Deep-Sea Res Part I-Oceanogr Res Papers 42(10):1773–1802. doi: 10.1016/0967-0637(95)00059-f CrossRefGoogle Scholar
  85. Schrader PS, Milligan AJ, Behrenfeld MJ (2011) Surplus photosynthetic antennae complexes underlie diagnostics of iron limitation in a cyanobacterium. PLoS ONE 6 (4). doi: e1875310.1371/journal.pone.0018753
  86. Sherman K, Belkin IM, Friedland KD, O’’eilly J, Hyde K (2009) Accelerated warming and emergent trends in fisheries biomass yields of the world’’ large marine ecosystems. Ambio 38(4):215–224CrossRefGoogle Scholar
  87. Sieburth JM, Smetacek V, Lenz J (1978) Pelagic ecosystem structure—heterotrophic compartments of plankton and their relationship to plankton size fractions—comment. Limnol Oceanogr 23(6):1256–1263CrossRefGoogle Scholar
  88. Siegel DA, Behrenfeld MJ, Maritorena S, McClain CR, Antoine D, Bailey SW, Bontempi PS, Boss E, Dierssen HM, Doney SC, Eplee RE, Evans RH, Feldman GC, Fields E, Franz BA, Kuring NA, Mengalt C, Nelson NB, Patt FS, Robinson WS, Sarmiento JS, Swan CM, Werdell PJ, Westberry TK, Wilding JG, Yoder JA (2013) Regional to global assessments of phytoplankton dynamics from the SeaWiFS mission. Remote Sens Environ 135:77–91Google Scholar
  89. Siegel DA, Westberry TK, O’’rien MC, Nelson NB, Michaels AF, Morrison JR, Scott A, Caporelli EA, Sorensen JC, Maritorena S, Garver SA, Brody EA, Ubante J, Hammer MA (2001) Bio-optical modeling of primary production on regional scales: The Bermuda biooptics project. Deep-Sea Res Part II-Topical Stud Oceanogr 48(8–9):1865–1896CrossRefGoogle Scholar
  90. Smyth TJ, Tilstone GH, Groom SB (2005) Integration of radiative transfer into satellite models of ocean primary production. J Geophys Res 110(C10). doi: 10.1029/2004jc002784
  91. Steemann Nielsen E (1952) The use of radio-active carbon (c14) for measuring organic production in the sea. J Cons Cons Int Explor Mer 18:117–140Google Scholar
  92. Talling JF (1957) The phytoplankton population as a compound photosynthetic system. New Phytol 56(2):133–149CrossRefGoogle Scholar
  93. Uitz J, Claustre H, Gentili B, Stramski D (2010) Phytoplankton class-specific primary production in the world’’ oceans: Seasonal and interannual variability from satellite observations. Glob Biogeochem Cycles 24. doi: 10.1029/2009gb003680
  94. Uitz J, Claustre H, Morel A, Hooker SB (2006) Vertical distribution of phytoplankton communities in open ocean: An assessment based on surface chlorophyll. J Geophys Res 111(C8). doi: 10.1029/2005jc003207
  95. Uitz J, Huot Y, Bruyant F, Babin M, Claustre H (2008) Relating phytoplankton photophysiological properties to community structure on large scales. Limnol Oceanogr 53(2):614–630CrossRefGoogle Scholar
  96. Vollenweider RA (1966) Calculation models of photosynthesis-depth curves and some implications regarding day rate estimates in primary production measurements. In: Goldman CR (ed) Primary productivity in aquatic environments. University of California Press, Berkeley. pp 455–472Google Scholar
  97. Westberry T, Behrenfeld MJ, Siegel DA, Boss E (2008) Carbon-based primary productivity modeling with vertically resolved photoacclimation. Glob Biogeochem Cycles 22(2):GB2024Google Scholar
  98. Westberry TK, Behrenfeld MJ, Milligan AJ, Doney SC (2013) Retrospective satellite ocean color analysis of purposeful and natural ocean iron fertilization. Deep-Sea Res Part I 73:1–16CrossRefGoogle Scholar
  99. Westberry TK, Siegel DA (2006) Spatial and temporal distribution of Trichodesmium blooms in the world's oceans. Glob Biogeochem Cycles 20(4). doi: 10.1029/2005gb002673
  100. Westberry TK, Williams PJ. Le B, Behrenfeld MJ (2012) Global net community production and the putative net heterotrophy of the Oligotrophic Oceans. Global Biogeochem Cycles 26. doi: 10.1029/2011GB004094
  101. Zhao MS, Heinsch FA, Nemani RR, Running SW (2005) Improvements of the modis terrestrial gross and net primary production global data set. Remote Sens Environ 95(2):164–176. doi: 10.1016/j.rse.2004.12.011 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Botany and Plant PathologyOregon State UniversityCorvallisUSA

Personalised recommendations