Assessing Net Ecosystem Exchange of Carbon Dioxide Between the Terrestrial Biosphere and the Atmosphere Using Fluxnet Observations and Remote Sensing

  • Jingfeng Xiao
Part of the Springer Remote Sensing/Photogrammetry book series (SPRINGERREMO)


The quantification of net ecosystem exchange (NEE) of carbon dioxide over regions, continents, or the globe is essential for understanding the feedbacks between the terrestrial biosphere and the atmosphere in the context of global climate change. The eddy covariance technique provides continuous NEE measurements for a variety of ecosystem and climate types. These measurements, however, only represent the fluxes at the scale of the tower footprint. Here a data-driven approach and satellite remote sensing are used to upscale NEE observations from eddy covariance flux towers to the continental scale and to produce gridded flux estimates for the conterminous U.S. over the period 2000–2009. The resulting 10-year gridded flux estimates (EC-MOD) have 1 km spatial resolution and 8-day time step, and provide independent and alternative NEE estimates compared to traditional approaches. These flux estimates are used to examine the spatial and temporal dynamics of NEE at seasonal, annual, and interannual scales. On average, the annual NEE of U.S. natural ecosystems is −0.54 Pg C year−1. The EC-MOD estimate of the U.S. carbon sink agrees with recent estimates from the literature. The dominant sources of the interannual variability in NEE of the U.S. include drought and disturbances. EC-MOD is also valuable for evaluating simulations from ecosystem models and atmospheric inversions.


Gross Primary Productivity Land Surface Temperature Ecosystem Respiration Enhance Vegetation Index Normalize Difference Water Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is supported by National Science Foundation (NSF) through Macrosystems Biology program under award 1065777, National Aeronautics and Space Administration (NASA) through Carbon Monitoring System (CMS) under grant NNX11AL32G, and Department of Energy (DOE) through National Institute for Climatic Change Research (NICCR) under grant 14U776. I thank the research/technical personnel of the AmeriFlux towers, MODIS data products, and MERRA data products for making the flux observations, MODIS data streams, and MERRA data available, respectively. I also thank the two anonymous reviewers for their constructive comments on the manuscript.


  1. Amiro BD, Barr AG, Barr JG, Black TA, Brach R, Brown M, Chen J, Clark KL, Davis KJ, Desai AR, Dore S, Engel V, Fuentes JD, Goldstein AH, Goulden ML, Kolb TE, Lavigne MB, Law BE, Margolis HA, Martin T, McCaughey JH, Misson L, Montes-Helu M, Noormets A, Randerson JT, Starr G, Xiao J (2010) Ecosystem carbon dioxide fluxes after disturbance in forests of North America. J Geophys Res Biogeosci 115:G00K02. doi: 10.1029/2010JG001390
  2. Anthoni PM, Unsworth MH, Law BE, Irvine J, Baldocchi DD, Tuyl SV, Moore D (2002) Seasonal differences in carbon and water vapor exchange in young and old-growth ponderosa pine ecosystems. Agri For Meteorol 111:203–222Google Scholar
  3. Asrar G, Fuchs M, Kanemasu ET, Hatfield JL (1984) Estimating of absorbed photosynthesis radiation and leaf area index from spectral reflectance in wheat. Agron J 6:300–306CrossRefGoogle Scholar
  4. Baldocchi D, Falge E, Gu L, Olson R, Hollinger D, Running S, Anthoni P, Bernhofer C, Davis K, Evans R, Fuentes J, Goldstein A, Katul G, Law B, Lee X, Malhi Y, Meyers T, Munger W, Oechel W, Paw UKT, Pilegaard K, Schmid HP, Valentini R, Verma S, Vesala T, Wilson K, Wofsy S (2001) FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull Am Meteorol Soc 82:2415–2434CrossRefGoogle Scholar
  5. Caspersen JP, Pacala SW, Jenkins JC, Hurtt GC, Moorcroft PR, Birdsey RA (2000) Contributions of land-use history to carbon accumulation in U.S. forests. Science 290:1148–1151CrossRefGoogle Scholar
  6. Ceccato P, Gobron N, Flasse S, Pinty B, Tarantola S (2002) Designing a spectral index to estimate vegetation water content from remote sensing data: part 1—theoretical approach. Remote Sen Environ 82:188–197CrossRefGoogle Scholar
  7. Clark KL, Gholz HL, Moncrieff JB, Cropley F, Loescher HW (1999) Environmental controls over net carbon dioxide from contrasting Florida ecosystems. Ecol Appl 9:936–948CrossRefGoogle Scholar
  8. Clark KL, Gholz HL, Castro MS (2004) Carbon dynamics along a chronosequence of slash pine plantations in N. Florida. Ecol Appl 4:1154–1171CrossRefGoogle Scholar
  9. Dang X, Lai C-T, Hollinger D, Schauer A, Xiao J, Munger W, Owensby C, Ehleringer JR (2011) Combining tower mixing ratio and community model data to estimate regional-scale net ecosystem carbon exchange by boundary layer inversion over 4 flux towers in the USA. J Geophys Res Biogeosci 116:G03036. doi: 10.1029/2010JG001554 CrossRefGoogle Scholar
  10. Desai AR, Richardson AD, Moffat AM, Kattge J, Hollinger DY, Barr A, Falge E, Noormets A, Papale D, Reichstein M, Stauch, VJ (2008) Cross-site evaluation of eddy covariance GPP and RE decomposition techniques. Agric For Meteorol 148:821–838Google Scholar
  11. Deng F, Chen JM, Ishizawa M, Yuen C-W, Mo G, Higuchi K, Chan D, Maksyutov S (2007) Global monthly CO2 flux inversion with a focus over North America. Tellus 59B:179–190CrossRefGoogle Scholar
  12. Deng F, Chen JM, Pan Y, Peters W, Birdsey R, McCullough K, Xiao J (2013) The use of forest stand age information in an atmospheric CO2 inversion applied to North America. Biogeosciences 10:5335–5348 Google Scholar
  13. Fensholt R, Sandholt I (2003) Derivation of a shortwave infrared water stress index from MODIS near- and shortwave infrared data in a semiarid environment. Remote Sens Environ 87:111–121CrossRefGoogle Scholar
  14. Friedl MA, McIver DK, Hodges JCF, Zhang XY, Muchoney D, Strahler AH, Woodcock CE, Gopal S, Schneider A, Cooper A, Baccini A, Gao F, Schaaf C (2002) Global land cover mapping from MODIS: algorithms and early results. Remote Sens Environ 83:287–302CrossRefGoogle Scholar
  15. Gao BC (1996) NDWI—a normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens Environ 58:257–266CrossRefGoogle Scholar
  16. Göckede M, Foken T, Aubinet M, Aurela M, Banza J, Bernhofer C, Bonnefond JM, Brunet Y, Carrara A, Clement R, Dellwik E, Elbers J, Eugster W, Fuhrer J, Granier A, Grünwald T, Heinesch B, Janssens IA, Knohl A, Koeble R, Laurila T, Longdoz B, Manca G, Marek M, Markkanen T, Mateus J, Matteucci G, Mauder M, Migliavacca M, Minerbi S, Moncrieff J, Montagnani L, Moors E, Ourcival J-M, Papale D, Pereira J, Pilegaard K, Pita G, Rambal S, Rebmann C, Rodrigues A, Rotenberg E, Sanz MJ, Sedlak P, Seufert G, Siebicke L, Soussana JF, Valentini R, Vesala T, Verbeeck H, Yakir D (2008) Quality control of CarboEurope flux data—part 1: coupling footprint analyses with flux data quality assessment to evaluate sites in forest ecosystems. Biogeosciences 5:433–450CrossRefGoogle Scholar
  17. Goodale CL, Apps MJ, Birdsey RA, Field CB, Heath LS, Houghton RA, Jenkins JC, Kohlmaier GH, Kurz WA, Liu S, Nabuurs G-J, Nilsson S, Shvidenko AZ (2002) Forest carbon sinks in the Northern Hemisphere. Ecol Appl 12:891–899CrossRefGoogle Scholar
  18. Goward SN, Masek JG, Cohen W, Moisen G, Collatz GJ, Healey S, Houghton R, Huang C, Kennedy R, Law B, Turner D, Powell S, Wulder M (2008) Forest disturbance and North American carbon flux. EOS Trans Am Geophys Union 89:105–106CrossRefGoogle Scholar
  19. Hargrove WW, Hoffman FM, Law BE (2003) New analysis reveals representativeness of the AmeriFlux network. EOS Trans 84:529–544CrossRefGoogle Scholar
  20. Hollinger DY, Richardson AD (2005) Uncertainty in eddy covariance measurements and its application to physiological models. Tree Physiol 25:873–885CrossRefGoogle Scholar
  21. Houghton RA, Hackler JL, Lawrence KT (1999) The U.S. carbon budget: contributions from land-use change. Science 285:574–578CrossRefGoogle Scholar
  22. Huang C, Goward SN, Masek JG, Thomas N, Zhu Z, Vogelmann JE (2010) An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks. Remote Sens Environ 114:183–198CrossRefGoogle Scholar
  23. Huete AR, Liu HQ, Batchily K, van Leeuwen OW (1997) A comparison of vegetation indices global set of TM images for EOS-MODIS. Remote Sens Environ 59:440–451CrossRefGoogle Scholar
  24. Huete A, Didan K, Miura T, Rodriguez EP, Gao X, Ferreira LG (2002) Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens Environ 83:195–213CrossRefGoogle Scholar
  25. Hunt ER, Rock BN (1989) Detection of changes in leaf water content using near and middle-infrared reflectances. Remote Sens Environ 30:43–54CrossRefGoogle Scholar
  26. Huntzinger DN, Post WM, Wei Y, Michalak AM, West TO, Jacobson AR, Baker IT, Chen JM, Davis KJ, Hayes DJ, Hoffman FM, Jain AK, Liu S, McGuire AD, Neilson RP, Potter C, Poulter B, Price D, Raczka BM, Tian HQ, Thornton P, Tomelleri E, Viovy N, Xiao J, Yuan W, Zeng N, Zhao M, Cook R (2012) North American carbon program (NACP) regional interim synthesis: terrestrial biosphere model intercomparison. Ecol Model 232:144–157. doi: 10.1016/j.ecolmodel.2012.02.004 CrossRefGoogle Scholar
  27. Jackson TJ, Chen D, Cosh M, Li F, Anderson M, Walthall C, Doriaswamy P, Hunt ER (2004) Vegetation water content mapping using Landsat data derived normalized difference water index fro corn and soybeans. Remote Sens Environ 92:475–482CrossRefGoogle Scholar
  28. Jung M, Reichstein M, Bondeau A (2009) Towards global empirical upscaling of FLUXNET eddy covariance observations: validation of a model tree ensemble approach using a biosphere model. Biogeosciences 6:2001–2013CrossRefGoogle Scholar
  29. Liu S, Bond-Lamberty B, Hicke JA, Vargas R, Zhao S, Chen J, Edburg SL, Hu Y, Liu J, McGuire AD, Xiao J, Keane R, Yuan W, Tang J, Luo Y, Potter C, Oeding J (2011) Simulating the impacts of disturbances on forest carbon cycling in North America: processes, data, models, and challenges. J Geophys Res Biogeosci 116:G00K08. doi: 10.1029/2010JG001585
  30. Loescher HW, Law BE, Mahrt L, Hollinger DY, Campbell J, Wofsy SC (2006) Uncertainties in, and interpretation of, carbon flux estimates using the eddy covariance technique. J Geophys Res 111: D21S90. doi: 10.1029/2005JD006932
  31. Myneni RB, Dong J, Tucker CJ, Kaufmann RK, Kauppi PE, Liski J, Zhou L, Alexeyev V, Hughes MK (2001) A large carbon sink in the woody biomass of northern forests. PNAS 98:14784–14789CrossRefGoogle Scholar
  32. Myneni RB, Hoffman S, Knyazikhin Y, Privette JL, Glassy J, Tian Y, Wang Y, Song X, Zhang Y, Smith GR, Lotsch A, Friedl M, Morisette JT, Votava P, Nemani RR, Running SW (2002) Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sens Environ 83:214–231Google Scholar
  33. Pacala SW, Hurtt GC, Baker D, Peylin P, Houghton RA, Birdsey RA, Heath L, Sundquist ET, Stallard RF, Ciais P, Moorcroft P, Caspersen JP, Shevliakova E, Moore B, Kohlmaier G, Holland E, Gloor M, Harmon ME, Fan S-M, Sarmiento JL, Goodale CL, Schimel D, Field CB (2001) Consistent land- and atmosphere-based U.S. carbon sink estimates. Science 292:2316–2320CrossRefGoogle Scholar
  34. Pan Y et al (2011a) A large and persistent carbon sink in the world’s forests. Science 333:988–993CrossRefGoogle Scholar
  35. Pan Y, Chen JM, Birdsey R, McCullough K, He L, Deng F (2011b) Age structure and disturbance legacy of North American forests. Biogeosciences 8(715–732):979–1020Google Scholar
  36. Penuelas J, Gamon JA, Griffin KL, Field CB (1993) Assessing community type, plant biomass, pigment composition, and photosynthetic efficiency of aquatic vegetation from spectral reflectance. Remote Sens Environ 46:110–118CrossRefGoogle Scholar
  37. Potter CS, Randerson JT, Field CB, Matson PA, Vitousek PM, Mooney HA, Klosster SA (1993) Terrestrial ecosystem production—a process model based on global satellite and surface data. Glob Biogeochem Cycles 7:811–841CrossRefGoogle Scholar
  38. Rahman AF, Sims DA, Cordova VD, El-Masri BZ (2005) Potential of MODIS EVI and surface temperature for directly estimating per-pixel ecosystem C fluxes. Geophy Res Lett 32:L19404. doi: 10.1029/2005GL024127 CrossRefGoogle Scholar
  39. Ranson KJ, Daughtry CST, Biehl LL, Bauer ME (1985) Sun-view angle effects on reflectance factors of corn canopies. Remote Sens Environ 18:47–161CrossRefGoogle Scholar
  40. Reichstein M, Falge E, Baldocchi D, Papale D, Aubinet M, Berbigier P, Bernhofer C, Buchmann N, Gilmanov T, Granier A, Grunwald T, Havrankova K, Ilvesniemi H, Janous D, Knohl A, Laurila T, Lohila A, Loustau D, Matteucci G, Meyers T, Miglietta F, Ourcival JM, Pumpanen J, Rambal S, Rotenberg E, Sanz M, Tenhunen J, Seufert G, Vaccari F, Vesala T, Yakir D, Valentini R (2005) On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Glob Change Biol 11:1424–1439CrossRefGoogle Scholar
  41. Richardson AD, Hollinger DY, Aber JD, Qllinger SV, Braswell BH (2007) Environmental variation is directly responsible for short- but not long-term variation in forest-atmosphere carbon exchange. Glob Change Biol 13:788–803CrossRefGoogle Scholar
  42. Richardson AD, Black TA, Ciais P, Delbart N, Friedl MA, Gobron N, Hollinger DY, Kutsch WL, Longdoz B, Luyssaert S, Migliavacca M, Montagnani L, Munger JW, Moors E, Piao S, Rebmann C, Reichstein M, Saigusa N, Tomelleri E, Vargas R, Varlagin A (2010) Influence of spring and autumn phenological transition on forest ecosystem productivity. Philos Trans R Soc B 365:3227–3246CrossRefGoogle Scholar
  43. Rienecker MM, Suarez MJ, Gelaro R, Todling R, Bacmeister J, Liu E et al (2011) MERRA—NASA’s modern-era retrospective analysis for research and applications. J Clim 24:3624–3648. doi: 10.1175/JCLI-D-11-00015.1 CrossRefGoogle Scholar
  44. RuleQuest (2008) Accessed 18 Oct 2007
  45. Running SW, Hunt ER (1993) Generalization of a forest ecosystem process model for other biomes, Biome-BGC, and an application for global-scale models. Scaling processes between leaf and landscape levels. In: Ehleringer JR, Field CB (eds) Scaling physiological processes: leaf to globe. Academic Press, San Diego, pp 141–158CrossRefGoogle Scholar
  46. Ryan MG (1991) Effects of climate change on plant respiration. Ecol Appl 1:157–167CrossRefGoogle Scholar
  47. Ryan MG, Law BE (2005) Interpreting, measuring, and modeling soil respiration. Biogeochemistry 73:3–27CrossRefGoogle Scholar
  48. Schimel D, Melillo J, Tian H, McGuire AD, Kicklighter D, Kittel T, Rosenbloom N, Running S, Thornton P, Ojima D, Parton W, Kelly R, Sykes M, Neilson R, Rizzo B (2000) Contribution of increasing CO2 and climate to carbon storage by ecosystems in the United States. Science 287:2004–2006CrossRefGoogle Scholar
  49. Schmid HP (1994) Source areas for scalars and scalar fluxes. Bound Layer Meteorol 67:293–318Google Scholar
  50. Sellers PJ, Randall DA, Betts AK, Hall FG, Berry JA, Collatz GJ, Denning AS, Mooney HA, Nobre CA, Sato N, Field CB, Henderson-sellers A (1997) Modeling the exchanges of energy, water, and carbon between continents and the atmosphere. Science 275:502–509CrossRefGoogle Scholar
  51. Shroyer JP, Thompson C, Brown R, Ohlenbach PD, Fjell DL, Staggenborg S, Duncan S, Kilgore GL (1996) Kansas crop planting guide, vol L-818. Kansas State University, Manhattan, pp 2Google Scholar
  52. SOCCR (2007) King AW et al (eds) The First state of the carbon cycle report (SOCCR): the North American carbon budget and implications for the global carbon cycle. US Climate Change Science Program, Washington, p 19Google Scholar
  53. Sun G, Caldwell P, Noormets A, McNulty SG, Cohen E, Moore Myers J, Domec J-C, Treasure E, Mu Q, Xiao J, John R, Chen J (2011) Upscaling key ecosystem functions across the conterminous United States by a water-centric ecosystem model. J Geophys Res Biogeosci 116:G00J05. doi: 10.1029/2010JG001573
  54. Tans PP, Fung IY, Takahashi T (1990) Observational constraints on the global atmospheric CO2 budget. Science 247:1431–1438CrossRefGoogle Scholar
  55. Wan Z, Zhang Y, Zhang Q, Li Z-L (2002) Validation of the land-surface temperature products retrieved from Terra Moderate Resolution Imaging Spectroradiometer data. Remote Sens Environ 83:163–180CrossRefGoogle Scholar
  56. Waring RH, Franklin JF (1979) Evergreen coniferous forests of the Pacific Northwest. Science 204:1380–1386CrossRefGoogle Scholar
  57. Wiedinmyer C, Neff JC (2007) Estimates of CO2 from fires in the United States: implications for carbon management. Carbon Balance Manag 2. doi: 10.1186/1750-0680-2-10
  58. Wofsy SC, Goulden ML, Munger JW, Fan S-M, Bakwin PS, Daube BC, Bassow SL, Bazzaz FA (1993) Net exchange of CO2 in a mid-latitude forest. Science 260:1314–1317CrossRefGoogle Scholar
  59. Xiao J, Moody A (2004) Photosynthetic activity of US biomes: responses to the spatial variability and seasonality of precipitation and temperature. Glob Change Biol 10:437–451CrossRefGoogle Scholar
  60. Xiao J, Moody A (2005) A comparison of methods for estimating fractional green vegetation cover within a dsert-to-upland transition zone in central New Mexico, USA. Remote Sens Environ 98:237–250CrossRefGoogle Scholar
  61. Xiao J, Zhuang Q, Liang E, McGuire AD, Moody A, Kicklighter DW, Melillo JM (2009) Twentieth century droughts and their impacts on terrestrial carbon cycling in China. Earth Interact 13(010):1–31. doi: 10.1175/2009EI275.1 CrossRefGoogle Scholar
  62. Xiao J, Zhuang Q, Baldocchi DD, Law BE, Richardson AD, Chen J, Oren R, Starr G, Noormets A, Ma S, Verma SB, Wharton S, Wofsy SC, Bolstad PV, Burns SP, Cook DR, Curtis PS, Drake BG, Falk M, Fischer ML, Foster DR, Gu L, Hadley JL, Hollinger DY, Katul GG, Litvak M, Martin TA, Matamala R, McNulty S, Meyers TP, Monson RK, Munger JW, Oechel WC, Paw UKT, Schmid HP, Scott RL, Sun G, Suyker AE, Torn MS (2008) Estimation of net ecosystem carbon exchange for the conterminous United States by combining MODIS and AmeriFlux data. Agric For Meteorol 148:1827–1847. doi: 10.1016/j.agrformet.2008.06.015 CrossRefGoogle Scholar
  63. Xiao J, Zhuang Q, Law BE, Chen J, Baldocchi DD, Cook DR, Oren R, Richardson AD, Wharton S, Ma S, Martin TA, Verma SB, Suyker AE, Scott RL, Monson RK, Litvak M, Hollinger DY, Sun G, Davis KJ, Bolstad PV, Burns SP, Curtis PS, Drake BG, Falk M, Fischer ML, Foster DR, Gu L, Hadley JL, Katul GG, Matamala R, McNulty S, Meyers TP, Munger JW, Noormets A, Oechel WC, Paw UKT, Schmid HP, Starr G, Torn MS, Wofsy SC (2010) A continuous measure of gross primary production for the conterminous U.S. derived from MODIS and AmeriFlux data. Remote Sens Environ 114:576–591. doi: 10.1016/j.rse.2009.10.013 CrossRefGoogle Scholar
  64. Xiao J, Zhuang Q, Law BE, Baldocchi DD, Chen J, Richardson AD, Melillo JM, Davis KJ, Hollinger DY, Wharton S, Oren R, Noormets A, Fischer ML, Verma SB, Cook DR, Sun G, McNulty S, Wofsy SC, Bolstad PV, Burns SP, Curtis PS, Drake BG, Falk M, Foster DR, Gu L, Hadley JL, Katul GG, Litvak M, Ma S, Martin TA, Matamala R, Meyers TP, Monson RK, Munger JW, Oechel WC, Paw UKT, Schmid HP, Scott RL, Starr G, Suyker AE, Torn MS (2011a) Assessing Net ecosystem carbon exchange of U.S. terrestrial ecosystems by integrating eddy covariance flux measurements and satellite observations. Agric For Meteorol 151:60–69. doi: 10.1016/j.agrformet.2010.09.002 CrossRefGoogle Scholar
  65. Xiao J, Davis KJ, Urban NM, Keller K, Saliendra NZ (2011b) Upscaling carbon fluxes from towers to the regional scale: influence of parameter variability and land cover representation on regional flux estimates. J Geophys Res 116:G00J06. doi: 10.1029/2010JG001568
  66. Xiao J, Chen J, Davis KJ, Reichstein M (2012) Advances in upscaling of eddy covariance measurements of carbon and water fluxes. J Geophys Res Biogeosci 117:G00J01. doi: 10.1029/2011JG001889
  67. Xiao X, Zhang Q, Saleska S, Hutyra L, Camargo PD et al (2005) Satellite-based modeling of gross primary production in a seasonally moist tropical evergreen forest. Remote Sens Environ 94:105–122CrossRefGoogle Scholar
  68. Yang L, Huang C, Homer C, Wylie BK, Coan MJ (2003) An approach for mapping large-area impervious surfaces: synergistic use of Landsat-7 ETM + and high spatial resolution imagery. Can J Remote Sens 29:230–240CrossRefGoogle Scholar
  69. Zhang L, Wylie BK, Ji L, Gilmanov TG, Tieszen LL, Howard DM (2011) Upscaling carbon fluxes over the great plains grasslands: sinks and sources. J Geophys Res 116:G00J03. doi: 10.1029/2010JG001504
  70. Zhang X, Kondragunta S (2006) Estimating forest biomass in the USA using generalized allometric models and MODIS land products. Geophys Res Lett 33:L09402. doi: 10.1029/2006GL025879 Google Scholar
  71. Zhao M, Heinsch FA, Nemani RR, Running SW (2005) Improvements of the MODIS terrestrial gross and net primary production global data set. Remote Sens Environ 95:164–175CrossRefGoogle Scholar
  72. Zhou L, Tucker CJ, Kaufmann RK, Slayback D, Shabanov NV, Myneni RB (2001) Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999. J Geophys Res 106:20069–20083CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Earth Systems Research Center, Institute for the Study of Earth, Oceans, and SpaceUniversity of New HampshireDurhamUSA

Personalised recommendations