Advertisement

The Past and Future of the Mammoth Steppe Ecosystem

  • Sergey A. Zimov
  • N. S. Zimov
  • F. S. ChapinIII
Chapter
Part of the Springer Earth System Sciences book series (SPRINGEREARTH)

Abstract

During the Last Glacial Maximum (LGM) the mammoth steppe was the planet’s biggest biome. Ice rich loess-like soils of this biome covered vast northern territories. These soils are currently one of the biggest carbon reservoirs. It is likely that in this century the bigger part of these soils will thaw. This would lead to massive erosion, destruction of modern ecosystems and a large emission of carbon dioxide and methane into the atmosphere, which are produced from the decomposition of Pleistocene organics. Minimizing these effects is possible only through the restoration of ecosystems similar to the Pleistocene mammoth steppe. Skeleton densities in the permafrost show that the mammoth steppe was a highly productive ecosystem similar to African savannas. Biomass of animals in the north of Siberia was ~10t/km2. Herbivores enhanced biocyclicity, trampled moss and shrubs and maintained pastures. Therefore this ecosystem was only partially dependent on climate. Analyses of climate dynamics, vegetation and animals shows that today the climate in the north of Siberia, Alaska and Yukon are close to the optimum of the mammoth steppe, and that climate warming did not destroy this ecosystem. Rather, humans are the more likely cause. After the LGM, climate warming allowed humans to penetrate the north, where they decreased animal densities to the point where they became insufficient to maintain pastures. In this chapter we discuss questions of preservation of bones and artifacts in the permafrost, physiology and evolution of pasture ecosystems and the role of humans in this ecosystem.

Keywords

Extinction Global warming Humans Mammoth steppe Permafrost 

References

  1. Adams JM, Faure H (1998) A new estimate of changing carbon storage on land since the last glacial maximum, based on global land ecosystem reconstruction. Global Plan Change 3:16–17Google Scholar
  2. Adams JM, Faure H, Faure-Denard L, McGlade JM, Woodward FI (1990) Increases in terrestrial carbon storage from the last glacial maximum to the present. Nature 348:711–714CrossRefGoogle Scholar
  3. Alroy J (2001) A multi-species overkill simulation of the end-Pleistocene megafaunal mass extinction. Science 292:1893–1896CrossRefGoogle Scholar
  4. Alvarez-Lao DJ, García N (2011) Geographical distribution of Pleistocene cold-adapted large mammal faunas in the Iberian Peninsula. Quat Inter 233:159–170CrossRefGoogle Scholar
  5. Atlas selskogo khozyaistva Yakutskoi ASSR (1989) In: Matveev IA (ed), GUGK, SSSR, Moscow (in Russian)Google Scholar
  6. Barnosky AD, Koch PL, Feranec RS, Wing SL, Shabel AB (2004) Assessing the causes of Late Pleistocene extinctions on the continents. Science 306:70–75CrossRefGoogle Scholar
  7. Boeskorov GG, Kirillov ND, Lazarev PA, Testsov VV (2008) Prognostic estimate of mammoth ivory resource in the north of Yakutia. Problemy Regional’noi Ekologii 2:106–109 (in Russian)Google Scholar
  8. Chapin FS, Shaver GR, Giblin AE, Nadelhoffer KG, Laundre JA (1995) Responses of arctic tundra to experimental and observed changes in climate. Ecology 76:694–711CrossRefGoogle Scholar
  9. Chuprynin VI, Zimov SA, Molchanova LA (2001) Modeling of thermal regime of soil accounting for biological heat source. Earth Cryosp 5:80–87Google Scholar
  10. Donlan CJ, Berger J, Bock CE et al (2006) Pleistocene rewilding: an optimistic agenda for twenty-first century conservation. Am Nat 168:660–681CrossRefGoogle Scholar
  11. Foley JA, Kutzbach JE, Coe MT, Levis S (1994) Feedbacks between climate and boreal forests during the Holocene epoch. Nature 371:52–54CrossRefGoogle Scholar
  12. Garutt NV, Boeskorov GG (2001) Woolly rhinoceros: on the history of the genus. In: Rozanov YA (ed) Mammoth and its environment: 200 years of investigations. GEOS, Moscow, pp 157–167 (in Russian)Google Scholar
  13. Guthrie RD (1990) Frozen fauna of the mammoth Steppe. The University of Chicago Press, ChicagoGoogle Scholar
  14. Guthrie RD (2004) Radiocarbon evidence of mid-Holocene mammoths stranded on an Alaskan Bering Sea island. Nature 426:746–749CrossRefGoogle Scholar
  15. Guthrie RD (2006) New carbon dates link climatic change with human colonization and Pleistocene extinctions. Nature 441:207–209CrossRefGoogle Scholar
  16. Khvorostyanov DV, Ciais P, Krinner G, Zimov SA (2008) Vulnerability of east Siberia’s frozen carbon stores to future warming. Geophys Res Lett. doi: 10.1029/2008GL033639
  17. Kuzmin A, Orlova LA, Zolnikov ID, Igolnikov AE (2001) The dynamic of mammoth (Mammuthis primigenious Blum.) population in northern Asia in the late Pleistocene-Holocene. In: Rozanov YA (ed) Mammoth and its environment: 200 years of investigations. GEOS, Moscow, pp 124–139 (in Russian)Google Scholar
  18. Lee X, Goulden ML, Hollinger DY et al (2011) Observed increase in local cooling effect of deforestation at higher latitudes. Nature 479:384–387CrossRefGoogle Scholar
  19. Louys J (2008) Quaternary extinctions in Southeast Asia. In: Elewa AMT (ed) Mass extinction. Springer, HeidelbergGoogle Scholar
  20. Martin PS (1984) Prehistoric overkill: the global model. In: Martin PS, Klein RG (eds) Quaternary extinctions. University of Arizona Press, TucsonGoogle Scholar
  21. Muhs D (2003) Stratigraphy and palaeoclimatic significance of Late Quaternary loess-palaeosol sequences of the Last-Interglacial-Glacial cycle in central Alaska. Quaternary Sci Rev 22:1947–1986CrossRefGoogle Scholar
  22. Nikolskiy PA, Basilyan AE, Sulerzhitsky LD, Pitulko VV (2009) Prelude to the extinction: revision of the Achchagyi–Allaikha and Berelyokh mass accumulations of mammoth. Quat Int. doi: 10.1016/j.quaint.2009.10.028
  23. Pavlov AV (1984) Energoobmen v landshaftnoi sfere zemli. Nauka, Sibirskoe otdelenie, Novosibirsk (in Russian)Google Scholar
  24. Pitul’ko VV (1993) An early Holocene site in the Siberian High Arctic. Arctic Anthropol 30:13–21Google Scholar
  25. Przhevalsky NM (1947) Puteshestvie v Ussuriiskom krae. 1867–1869. OGIZ, Moskva (in Russian)Google Scholar
  26. Reimer PJ, Baillie MGL, Bard E et al (2004) INTCAL04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46:1029–1058Google Scholar
  27. Rivkina EM, Kraev GN, Krivushin KV, Laurinavichus KS, Fyodorov-Davydov DG, Kholodov AL, Shcherbakova VA, Gilichinsky DA (2006) Methane in permafrost of Northern Arctic. Earth Cryosp 10:23–41Google Scholar
  28. Schirrmeister L, Siegert C, Kuznetsova T, Kuzmina S, Andreev AA, Kienast F, Meyer H, Bobrov AA (2002) Paleoenvironmental and paleoclimatic records from permafrost deposits in the Arctic region of Northern Siberia. Quat Int 89:97–118CrossRefGoogle Scholar
  29. Severinghaus JP, Brook EJ (1999) Abrupt climate change at the end of the last glacial period inferred from trapped air in polar ice. Science 286:930–934CrossRefGoogle Scholar
  30. Sher AV (1997) Nature restructuring in the East-Siberian Arctic at the Pleistocene-Holocene boundary and its role in mammal extinction and emerging of modern ecosystems. Earth Cryosp 1:3–11, 21–29Google Scholar
  31. Sher AV, Kuzmina SA, Kuznetsova TV, Sulerzhitsky LD (2005) New insights into the Weichselian environment and climate of the East Siberian Arctic, derived from fossil insects, plants, and mammals. Quat Sci Rev 24:533–569CrossRefGoogle Scholar
  32. Sokolov IA, Konyushkov DE (1998) Soils and the soil mantle of the Northern Circumpolar region. Eurasian Soil Sci 31(11):1179–1193Google Scholar
  33. Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (2007) Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge/New YorkGoogle Scholar
  34. Stephenson RO, Gerlach SC, Gurthrie RD, Harington CR, Mills RO, Hare G (2001) Wood bison in late Holocene Alaska and adjacent Canada; paleontological, archaeological and historical records. In: Gerlach SC, Murray MS (eds) People and wildlife in northern North America: essays in honor of R. Dale Guthrie, vol 944, BAR international series. Archaeopress, OxfordGoogle Scholar
  35. Syroechkovskii VE (1986) Severnii Olen’. Agropromizdat, Moscow (in Russian)Google Scholar
  36. Tarnocai C, Canadell JG, Schuur EAG, Kuhry P, Mazhitova G, Zimov SA (2009) Soil organic carbon pools in the northern circumpolar permafrost region. Global Biogeochem Cycles 23:2023CrossRefGoogle Scholar
  37. Vartanyan SL (2007) Wrangel Island at the end of Quaternary period: geology and paleogeography. Ivan Limbakh, St. PetersburgGoogle Scholar
  38. Vasil’chuk YK, Punning JM, Vasil’chuk AC (1997) Radiocarbon ages of mammoths in northern Eurasia: implications for population development and late Quaternary environment. Radiocarbon 39:1–18Google Scholar
  39. Vasil’chuk YK, Vasil’chuk AC, Rank D, Kutchera W, Kim J-C (2001) Radiocarbon dating of δ18O-δD plots in late Pleistocene ice-wedges of the Duvanny Yar (lower Kolyma River, northern Yakutia). Radiocarbon 43:503–515Google Scholar
  40. Velichko AA, Zelikson EM (2001) Landscape and climate conditions and the food basis for mammoth existence. In: Rozanov YA (ed) Mammoth and its environment: 200 years of investigations. GEOS, Moscow, pp 188–200 (in Russian)Google Scholar
  41. Vereshchagin NK, Tikhonov AN (1990) Exter’er Mamonta. Permafrost Institute, Yakutsk (in Russian)Google Scholar
  42. Walter KM, Zimov SA, Chantom JP, Verbyla D, Chapin FS III (2006) Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming. Nature 443:71CrossRefGoogle Scholar
  43. Walter KM, Edwards ME, Grosse G, Zimov SA, Chapin FS III (2007) Thermokarst lakes as a source of atmospheric CH4 during the last deglacial. Science 318:633–636CrossRefGoogle Scholar
  44. Yershov ED (1998) General geocryology. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  45. Yesner DR, Coltrain JB, O’Rourke D, Crossen KJ, Enk J, Veltre DW (2007) DNA sequence and stable isotopic analyses applied to the mid-Holocene mammoth remains from Qagnax’ cave, Pribilov islands, Alaska. In: Boeskorov GG (ed) IV international mammoth conference: abstracts, YakutskGoogle Scholar
  46. Yu Z, Loisel J, Brosseau DP, Beilman DW, Hunt SJ (2010) Global peatlands dynamic since the Last Glacial Maximum. Geophys Res Lett 37:L13402CrossRefGoogle Scholar
  47. Zhigotsky VYa (1982) Korennoe izmenenie geokhimii landshaftov na nizmennostyakh Severo-Vostoka SSSR na granice pleistocen-golocen. In: Shumilov YV (ed) Merzlotno-geologicheskie processy i Paleogeographiya nizmennostei Severo-Vostoka Azii. Magadan, pp 101–111 (in Russian)Google Scholar
  48. Zimov NS, Zimov SA, Zimova AE, Zimova GM, Chuprynin VI, Chapin FS III (2009) Carbon storage in permafrost and soils of the mammoth tundra-steppe biome: role in the global carbon budget. Geophys Res Lett. doi: 10.1029/2008GL036332
  49. Zimov SA (2005) Pleistocene Park: return of mammoth’s ecosystem. Science 308:796–798CrossRefGoogle Scholar
  50. Zimov SA, Zimov NS. Unpublished dataGoogle Scholar
  51. Zimov SA, Chupryninm VI (1991) Ecosystems: steadiness, competition and purposeful transformation. Nauka, Moscow (in Russian)Google Scholar
  52. Zimov SA, Chuprynin VI, Oreshko AP, Chapin FS III, Reynolds JF, Chapin MC (1995) Steppe-tundra transition: an herbivore-driven biome shift at the end of the pleistocene. Am Nat 146:765–794CrossRefGoogle Scholar
  53. Zimov SA, Davydov SP, Zimova GM, Davydova AI, Schuur EAG, Dutta K, Chapin FS III (2006a) Permafrost carbon: stock and decomposability of a globally significant carbon pool. Geophys Res Lett. doi: 10.1029/2006GL027484
  54. Zimov SA, Schuur EAG, Chapin FS III (2006b) Permafrost and the global carbon budget. Science 312:1612CrossRefGoogle Scholar
  55. Zimov SA, Voropaev YV, Semiletov IP, Davidov SP, Prosiannikov SF, Chapin FS III, Chapin MC, Trumbore S, Tyler S (1997) North Siberian lakes: a methane source fueled by pleistocene carbon. Science 277:800–802CrossRefGoogle Scholar
  56. Zimov SA, Zimov NS, Chapin FS III, Tikhonov AN. Mammoth steppe: a high-productivity phenomenon. Quat Sci Rev, under reviewGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Sergey A. Zimov
    • 1
    • 2
  • N. S. Zimov
    • 1
    • 2
  • F. S. ChapinIII
    • 1
    • 2
  1. 1.Northeast Science StationPacific Institute for Geography, Russian Academy of SciencesCherskiiRussia
  2. 2.Institute of Arctic BiologyUniversity of AlaskaFairbanksUSA

Personalised recommendations