Skip to main content

Complexity of the Cop and Robber Guarding Game

  • Conference paper
Book cover Combinatorial Algorithms (IWOCA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7056))

Included in the following conference series:

  • 613 Accesses

Abstract

The guarding game is a game in which several cops has to guard a region in a (directed or undirected) graph against a robber. The robber and the cops are placed on vertices of the graph; they take turns in moving to adjacent vertices (or staying), cops inside the guarded region, the robber on the remaining vertices (the robber-region). The goal of the robber is to enter the guarded region at a vertex with no cop on it. The problem is to determine whether for a given graph and given number of cops the cops are able to prevent the robber from entering the guarded region. The problem is highly nontrivial even for very simple graphs. It is known that when the robber-region is a tree, the problem is NP-complete, and if the robber-region is a directed acyclic graph, the problem becomes PSPACE-complete [Fomin, Golovach, Hall, Mihalák, Vicari, Widmayer: How to Guard a Graph? Algorithmica, DOI: 10.1007/s00453-009-9382-4]. We solve the question asked by Fomin et al. in the previously mentioned paper and we show that if the graph is arbitrary (directed or undirected), the problem becomes E-complete.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fomin, F., Golovach, P., Hall, A., Mihalák, M., Vicari, E., Widmayer, P.: How to Guard a Graph? Algorithmica, doi:10.1007/s00453-009-9382-4

    Google Scholar 

  2. Stockmeyer, L., Chandra, A.: Provably Difficult Combinatorial Games. SIAM J. Comput. 8(2), 151–174 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  3. Book, R.V.: Comparing complexity classes. J. of Computer and System Sciences 9(2), 213–229 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alspach, B.: Searching and sweeping graphs: a brief survey. Matematiche (Catania) 59(1-2), 5–37 (2006)

    MathSciNet  MATH  Google Scholar 

  5. Nowakowski, R., Winkler, P.: Vertex-to-vertex pursuit in a graph. Discrete Math. 43(2-3), 235–239 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  6. Quilliot, A.: Some results about pursuit games on metric spaces obtained through graph theory techniques. European J. Combin. 7(1), 55–66 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  7. Aigner, M., Fromme, M.: A game of cops and robbers. Discrete Appl. Math. 8(1), 1–11 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  8. Nagamochi, H.: Cop-robber guarding game with cycle robber-region. Theoretical Computer Science 412, 383–390 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Thirumala Reddy, T.V., Sai Krishna, D., Pandu Rangan, C.: The Guarding Problem – Complexity and Approximation. In: Fiala, J., Kratochvíl, J., Miller, M. (eds.) IWOCA 2009. LNCS, vol. 5874, pp. 460–470. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  10. Fomin, F.V., Thilikos, D.M.: An annotated bibliography on guaranteed graph searching. Theor. Comp. Sci. 399, 236–245 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Goldstein, A.S., Reingold, E.M.: The complexity of pursuit on a graph. Theor. Comp. Sci. 143, 93–112 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fomin, F.V., Golovach, P.A., Kratochvíl, J., Nisse, N., Suchan, K.: Pursuing a fast robber on a graph. Theor. Comp. Sci. 411, 1167–1181 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fomin, F.V., Golovach, P.A., Lokshtanov, D.: Guard games on graphs: Keep the intruder out! In: Bampis, E., Jansen, K. (eds.) WAOA 2009. LNCS, vol. 5893, pp. 147–158. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  14. Fomin, F.V., Golovach, P.A., Kratochvíl, J.: On tractability Cops and Robbers Game. In: Proceedings of the 5th IFIP International Conference on Theoretical Computer Science (TCS 2008). IFIP, vol. 237, pp. 171–185. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  15. Anderson, M., Barrientos, C., Brigham, R., Carrington, J., Vitray, R., Yellen, J.: Maximum demand graphs for eternal security. J. Combin. Math. Combin. Comput. 61, 111–128 (2007)

    MathSciNet  MATH  Google Scholar 

  16. Burger, A.P., Cockayne, E.J., Grundlingh, W.R., Mynhardt, C.M., van Vuuren, J.H., Winterbach, W.: Infinite order domination in graphs. J. Combin. Math. Combin. Comput. 50, 179–194 (2004)

    MathSciNet  MATH  Google Scholar 

  17. Goddard, W., Hedetniemi, S.M., Hedetniemi, S.T.: Eternal security in graphs. J. Combin. Math. Combin. Comput. 52, 169–180 (2005)

    MathSciNet  MATH  Google Scholar 

  18. Goldwasser, J., Klostermeyer, W.F.: Tight bounds for eternal dominating sets in graphs. Discrete Math. 308, 2589–2593 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Klostermeyer, W.F.: Complexity of Eternal Security. J. Comb. Math. Comb. Comput. 61, 135–141 (2007)

    MathSciNet  MATH  Google Scholar 

  20. Klostermeyer, W.F., MacGillivray, G.: Eternal security in graphs of fixed independence number. J. Combin. Math. Combin. Comput. 63, 97–101 (2007)

    MathSciNet  MATH  Google Scholar 

  21. Klostermeyer, W.F., MacGillivray, G.: Eternally Secure Sets, Independence Sets, and Cliques. AKCE International Journal of Graphs and Combinatorics 2, 119–122 (2005)

    MathSciNet  MATH  Google Scholar 

  22. Klostermeyer, W.F., MacGillivray, G.: Eternal dominating sets in graphs. J. Combin. Math. Combin. Comput. 68, 97–111 (2009)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Šámal, R., Stolař, R., Valla, T. (2011). Complexity of the Cop and Robber Guarding Game. In: Iliopoulos, C.S., Smyth, W.F. (eds) Combinatorial Algorithms. IWOCA 2011. Lecture Notes in Computer Science, vol 7056. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25011-8_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25011-8_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25010-1

  • Online ISBN: 978-3-642-25011-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics