Advertisement

Path-Oriented Keyword Search Query over RDF

  • Roberto De Virgilio
  • Paolo Cappellari
  • Antonio Maccioni
  • Riccardo Torlone
Chapter
Part of the Data-Centric Systems and Applications book series (DCSA)

Abstract

We are witnessing a smooth evolution of the Web from a worldwide information space of linked documents to a global knowledge base, where resources are identified by means of uniform resource identifiers (URIs, essentially string identifiers) and are semantically described and correlated through resource description framework (RDF, a metadata data model) statements.

Keywords

Resource Description Framework Steiner Tree Query Execution Linear Strategy Uniform Resource Identifier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bhalotia, G., Hulgeri, A., Nakhe, C., Chakrabarti, S., Sudarshan, S.: Keyword searching and browsing in databases using banks. ICDE, pp. 431–440 (2002)Google Scholar
  2. 2.
    Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. Comput. Networks 30(1–7), 107–117 (1998)Google Scholar
  3. 3.
    Cappellari, P., Virgilio, R.D., Miscione, M., Roantree, M.: A path-oriented rdf index for keyword search query processing. DEXA (2011)Google Scholar
  4. 4.
    Dalvi, B.B., Kshirsagar, M., Sudarshan, S.: Keyword search on external memory data graphs. Proc. VLDB 1(1), 1189–1204 (2008)Google Scholar
  5. 5.
    Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for middleware. PODS, pp. 102–113 (2001)Google Scholar
  6. 6.
    Fellbaum, C. (ed.): WordNet an Electronic Lexical Database. MIT, Cambridge, MA (1998)Google Scholar
  7. 7.
    Garey, M.R., Graham, R.L., Johnson, D.S.: The complexity of computing Steiner minimal trees. SIAM J. Appl. Math. 32(4), 835–859 (1977)Google Scholar
  8. 8.
    Golenberg, K., Kimelfeld, B., Sagiv, Y.: Keyword proximity search in complex data graphs. SIGMOD, pp. 927–940 (2008)Google Scholar
  9. 9.
    Guo, Y., Pan, Z., Heflin, J.: Lubm: a benchmark for owl knowledge base systems. J. Web Sem. 3(2-3), 158–182 (2005)Google Scholar
  10. 10.
    He, H., Wang, H., Yang, J., Yu, P.S.: Blinks: ranked keyword searches on graphs. SIGMOD (2007)Google Scholar
  11. 11.
    Hristidis, V., Gravano, L., Papakonstantinou, Y.: Efficient ir-style keyword search over relational databases. VLDB, pp. 850–861 (2003)Google Scholar
  12. 12.
    Hristidis, V., Koudas, N., Papakonstantinou, Y., Srivastava, D.: Keyword proximity search in xml trees. IEEE Trans. Knowl. Data Eng. 18(4), 525–539 (2006)Google Scholar
  13. 13.
    Kacholia, V., Pandit, S., Chakrabarti, S., Sudarshan, S., Desai, R., Karambelkar, H.: Bidirectional expansion for keyword search on graph databases. VLDB (2005)Google Scholar
  14. 14.
    Kimelfeld, B., Sagiv, Y.: Finding and approximating top-k answers in keyword proximity search. PODS, pp. 173–182 (2006)Google Scholar
  15. 15.
    Li, G., Ooi, B.C., Feng, J., Wang, J., Zhou, L.: Ease: an effective 3-in-1 keyword search method for unstructured, semi-structured and structured data. SIGMOD (2008)Google Scholar
  16. 16.
    Liu, F., Yu, C.T., Meng, W., Chowdhury, A.: Effective keyword search in relational databases. SIGMOD (2006)Google Scholar
  17. 17.
    Luo, Y., Lin, X., Wang, W., Zhou, X.: Spark: top-k keyword query in relational databases. SIGMOD (2007)Google Scholar
  18. 18.
    Luo, Y., Wang, W., Lin, X., Zhou, X., Member, S., Wang, I.J., Li, K.: Spark2: Top-k keyword query in relational databases. IEEE Trans. Knowl. Data Eng. 99, 1 (2011)Google Scholar
  19. 19.
    Piwowarski, B., Dupret, G.: Evaluation in (xml) information retrieval: expected precision-recall with user modelling (eprum). SIGIR, pp. 260–267 (2006)Google Scholar
  20. 20.
    Qin, L., Yu, J.X., Chang, L.: Keyword search in databases: the power of rdbms. SIGMOD (2009)Google Scholar
  21. 21.
    Singhal, A.: Modern information retrieval: a brief overview. Data(base) Eng. Bull. 24(4), 35–43 (2001)Google Scholar
  22. 22.
    Singhal, A., Buckley, C., Mitra, M.: Pivoted document length normalization. SIGIR, pp. 21–29 (1996)Google Scholar
  23. 23.
    Tran, T., Wang, H., Rudolph, S., Cimiano, P.: Top-k exploration of query candidates for efficient keyword search on graph-shaped (rdf) data. ICDE, pp. 405–416 (2009)Google Scholar
  24. 24.
    Virgilio, R.D., Cappellari, P., Miscione, M.: Cluster-based exploration for effective keyword search over semantic datasets. ER, pp. 205–218 (2009)Google Scholar
  25. 25.
    Zenz, G., Zhou, X., Minack, E., Siberski, W., Nejdl, W.: From keywords to semantic queries – incremental query construction on the semantic web. J. Web Semant. 7(3), 166–176 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Roberto De Virgilio
    • Paolo Cappellari
      • 1
    • Antonio Maccioni
      • 2
    • Riccardo Torlone
      • 3
    1. 1.Department of Informatics and AutomationUniversity Rome TreRomeItaly
    2. 2.Interoperable System GroupDublin City, UniversityDublinIreland
    3. 3.Interoperable System GroupDublin City, UniversityDublinIreland

    Personalised recommendations