Advertisement

What Is the Role of IMRT and IGRT in Rectal Cancer?

  • Jasper Nijkamp
  • Karin Haustermans
  • Corrie A. M. Marijnen
Chapter

Abstract

Over the past decades, advances in multi-modality treatment strategies have contributed significantly to the improvement of outcome in rectal cancer patients [1–6]. Decisions about the therapeutic regimen are based on tumour characteristics such as TNM stage and the involvement of the mesorectal fascia (MRF), determined with magnetic resonance imaging (MRI) and endoscopic ultrasonography (EUS) at time of diagnosis and on post-operative pathological evaluation. Based on these characteristics, rectal cancers can be divided into three groups with respect to their chances of developing either local and/or distant recurrences: low, intermediate and high risk or the ‘good’, the ‘bad’ and the ‘ugly’ [7, 8]. In each group, different risks are at stake which challenges the determination of optimal treatment.

Keywords

Rectal Cancer Planning Target Volume Cone Beam Compute Tomography Clinical Target Volume Transanal Endoscopic Microsurgery 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Anon (1997) Improved survival with preoperative radiotherapy in resectable rectal cancer. Swedish rectal cancer trial. N Engl J Med 336:980–987Google Scholar
  2. 2.
    Bosset JF, Collette L, Calais G et al (2006) Chemotherapy with preoperative radiotherapy in rectal cancer. N Engl J Med 355(11):1114–1123PubMedCrossRefGoogle Scholar
  3. 3.
    Gerard JP, Conroy T, Bonnetain F et al (2006) Preoperative radiotherapy with or without concurrent fluorouracil and leucovorin in T3–4 rectal cancers: results of FFCD 9203. J Clin Oncol 24(28):4620–4625PubMedCrossRefGoogle Scholar
  4. 4.
    van Gijn W, Marijnen CAM, Nagtegaal ID et al (2011) Preoperative radiotherapy combined with total mesorectal excision for resectable rectal cancer: 12-year follow-up of the multicentre, randomised controlled TME trial. Lancet Oncol 12:575–582PubMedCrossRefGoogle Scholar
  5. 5.
    Sauer R, Becker H, Hohenberger W et al (2004) Preoperative versus postoperative radiotherapy for rectal cancer. N Eng J Med 351:1731–1740CrossRefGoogle Scholar
  6. 6.
    Sebag-Montefiore D, Stephens RJ, Steele R et al (2009) Preoperative radiotherapy versus selective postoperative chemoradiotherapy in patients with rectal cancer (MRC CR07 and NCIC-CTG C016): a multicentre, randomised trial. Lancet 373(9666):811–820PubMedCrossRefGoogle Scholar
  7. 7.
    Smith N, Brown G (2008) Preoperative staging in rectal cancer. Acta Oncol 47:20–31PubMedCrossRefGoogle Scholar
  8. 8.
    Blomqvist L, Glimelius B (2008) The ‘good’, the ‘bad’, and the ‘ugly’ rectal cancers. Acta Oncol 45:5–8CrossRefGoogle Scholar
  9. 9.
    Heald RJ, Moran BJ, Ryall RD et al (1998) Rectal cancer: the Basingstoke experience of total mesorectal excision, 1978–1997. Arch Surg 133:894–899PubMedCrossRefGoogle Scholar
  10. 10.
    Ridgeway PF, Darzi AW (2003) The role of total mesorectal excision in the management of rectal cancer. Cancer Control 10(3):205–211Google Scholar
  11. 11.
    Tsai BM, Finne CO, Nordenstam JF et al (2010) Transanal endoscopic mircrosurgery resection of rectal tumor: outcomes and recommendations. Dis Colon Rectum 53:16–23PubMedCrossRefGoogle Scholar
  12. 12.
    Ramirez JM, Aguilella V, Valencia J et al (2011) Transanal endoscopic microsurgery for rectal cancer long-term oncologic results. Int J Colorectal Dis 26:437–443PubMedCrossRefGoogle Scholar
  13. 13.
    Lezoche E, Guerrieri M, Paganini AM et al (2005) Long-term results in patients with T2–3N0 distal rectal cancer undergoing radiotherapy before transanal endoscopic microsurgery. Br J Surg 92:1546–1552PubMedCrossRefGoogle Scholar
  14. 14.
    Nair RM, Siegel EM, Chen DT et al (2008) Long-term results of transanal excision after neoadjuvant chemoradiation for T2 and T3 adenocarcinomas of the rectum. J Gastrointest Surg 12:1797–1806PubMedCrossRefGoogle Scholar
  15. 15.
    Habr-Gama A, Perez RO, Sao Juliao GP et al (2011) Nonoperative approaches to rectal cancer: a critical evaluation. Semin Radiat Oncol 21:234–239PubMedCrossRefGoogle Scholar
  16. 16.
    Allaix ME, Rebecchi F, Giaccone C et al (2011) Long-term functional results and quality of life after transanal endoscopic microsurgery. Br J Surg. doi:  10.1002/bjs.7584
  17. 17.
    Brown G, Radcliffe AG, Newcombe RG et al (2003) Preoperative assessment of prognostic factors in rectal cancer using high-resolution magnetic resonance imaging. Br J Surg 90(3):355–364PubMedCrossRefGoogle Scholar
  18. 18.
    van Herk M, Remeijer P, Rasch C et al (2000) The probability of correct target dosage: dose-population histograms for deriving treatment margins in radiotherapy. Int J Radiat Oncol Biol Phys 47:1121–1135PubMedCrossRefGoogle Scholar
  19. 19.
    Guerrero Urbano MT, Henrys AJ, Adams EJ et al (2006) Intensity-modulated radiotherapy in patients with locally advanced rectal cancer reduces volume of bowel treated to high dose levels. Int J Radiat Oncol Biol Phys 65:907–916PubMedCrossRefGoogle Scholar
  20. 20.
    Arbea L, Ramos LI, Martinez-Monge R et al (2010) Intensity-modulated radiation therapy (IMRT) vs. 3D conformal radiotherapy (3DCRT) in locally advanced rectal cancer (LARC): dosimetric comparison and clinical implications. Radiat Oncol 5Google Scholar
  21. 21.
    Duthoy W, De Gersem W, Vergote K et al (2004) Clinical implementation of intensity-modulated arc therapy (IMAT) for rectal cancer. Int J Radiat Oncol Biol Phys 60:794–806PubMedCrossRefGoogle Scholar
  22. 22.
    Lambrecht M, Deroose C, Roels S et al (2010) The use of FDG-PET/CT and diffusion-weighted magnetic resonance imaging for response prediction before, during and after preoperative chemoradiotherapy for rectal cancer. Acta Oncol 49(7):956–963PubMedCrossRefGoogle Scholar
  23. 23.
    Roels S, Duthoy W, Hausermans K et al (2006) Definition and delineation of the clinical target volume for rectal cancer. Int J Radiat Oncol Biol Phys 65:1129–1142PubMedCrossRefGoogle Scholar
  24. 24.
    Baglan KL, Frazier RC, Yan D et al (2002) The dose-volume relationship of acute small bowel toxicity from concurrent 5-FU-based chemotherapy and radiation therapy for rectal cancer. Int J Radiat Oncol Biol Phys 52:176–183PubMedCrossRefGoogle Scholar
  25. 25.
    Robertson JM, Lockman D, Yan D et al (2008) The dose-volume relationship of small bowel irradiation and acute grade 3 diarrhea during chemoradiotherapy for rectal cancer. Int J Radiat Oncol Biol Phys 70:413–418PubMedCrossRefGoogle Scholar
  26. 26.
    Gallagher MJ, Brereton HD, Rostock RA et al (1986) A prospective study of treatment techniques to minimize the volume of pelvic small bowel with reduction of acute and late effects associated with pelvic irradiation. Int J Radiat Oncol Biol Phys 12:1565–1573PubMedCrossRefGoogle Scholar
  27. 27.
    Letschert JG, Lebesque JV, de Boer RW et al (1990) Dose-volume correlation in radiation-related late small-bowel complications: a clinical study. Radiother Oncol 18:307–320PubMedCrossRefGoogle Scholar
  28. 28.
    Samuelian JM, Callister MD, Ashman JB et al (2011) Reduced acute bowel toxicity in patients treated with intensity-modulated radiotherapy for rectal cancer. Int J Radiat Oncol Biol Phys. doi:  10.1016/j.ijrobp.2011.01.051
  29. 29.
    De Ridder M, Tournel K, Van Nieuwenhove Y et al (2008) Phase II study of preoperative helical tomotherapy for rectal cancer. Int J Radiat Oncol Biol Phys 70:728–734PubMedCrossRefGoogle Scholar
  30. 30.
    Seierstad T, Hole KH, Saelen E et al (2009) MR-guided simultaneous integrated boost in preoperative radiotherapy of locally advanced rectal cancer following neoadjuvant chemotherapy. Radiother Oncol 93:279–284PubMedCrossRefGoogle Scholar
  31. 31.
    Valentini V, Beets-Tan R, Borras JM et al (2008) Evidence and research in rectal cancer. Radiother Oncol 87:449–474PubMedCrossRefGoogle Scholar
  32. 32.
    Myerson RJ, Garofalo MC, Naqa IE et al (2009) Elective clinical target volumes for conformal therapy in anorectal cancer: an radiation therapy oncology group consensus panel contouring atlas. Int J Radiat Oncol Biol Phys 74(3):824–830PubMedCrossRefGoogle Scholar
  33. 33.
    Nijkamp J, de Haas-Kock DFM, Beukema JC et al (2011) Target volume delineation variation in radiotherapy for early stage rectal cancer in the Netherlands. Radiother Oncol. doi: 10.1016/j.radonc.2011.08.011
  34. 34.
    Fuller CD, Nijkamp J, Duppen JC et al (2010) Prospective randomized double-blind pilot study of site-specific consensus atlas implementation for rectal cancer target volume delineation in the cooperative group setting. Int J Radiat Oncol Biol Phys 79:481–489PubMedCrossRefGoogle Scholar
  35. 35.
    Hortobagyi E, Lambrecht M, Verstraete J et al (2011) Improving care of rectal cancer in Belgium by standardizing CTV delineation. Radiother Oncol 99(1):S67 (173)CrossRefGoogle Scholar
  36. 36.
    Rasch C, Steenbakkers R, van Herk M (2005) Target definition in prostate, head, and neck. Semin Radiat Oncol 15:136–145PubMedCrossRefGoogle Scholar
  37. 37.
    Steenbakkers R, Duppen J, Fitton I et al (2006) Reduction of observer variation using matched CT-PET for lung cancer delineation: a three-dimensional analysis. Int J Radiat Oncol Biol Phys 64:435–448PubMedCrossRefGoogle Scholar
  38. 38.
    Krengli M, Cannillo B, Turri L et al (2010) Target volume delineation for preoperative radiotherapy of rectal cancer: inter-observer variability and potential impact of FDG-PET/CT imaging. Technol Cancer Res Treat 4:393–398Google Scholar
  39. 39.
    O’Neill BD, Salerno G, Thomas K et al (2009) MR vs. CT imaging: low rectal cancer tumour delineation for three-dimensional conformal radiotherapy. Br J Radiol 978:509–513CrossRefGoogle Scholar
  40. 40.
    Kim TH, Chie EK, Kim DY et al (2005) Comparison of the belly board device method and the distended bladder method for reducing irradiated small bowel volumes in preoperative radiotherapy of rectal cancer patients. Int J Radiat Oncol Biol Phys 62(3):769–775PubMedCrossRefGoogle Scholar
  41. 41.
    Nijkamp J, Doodeman B, Marijnen CA et al (2011) Bowel exposure in rectal cancer IMRT using prone, supine or a belly board. Radiother Oncol. doi: 10.1016/j.radonc.2011.05.076
  42. 42.
    O’Doherty UM, McNair HA, Norman AR et al (2006) Variability of bladder filling in patients receiving radical radiotherapy to the prostate. Radiother Oncol 79:335–340PubMedCrossRefGoogle Scholar
  43. 43.
    Siddiqui F, Shi C, Papanikolaou N, Fuss M (2008) Image-guidance protocol comparison: supine and prone set-up accuracy for pelvic radiation therapy. Acta Oncol 47:1344–1350PubMedCrossRefGoogle Scholar
  44. 44.
    Bayley AJ, Catton NC, Haycocks T et al (2004) A randomized trial of supine vs. prone positioning in patients undergoing escalated dose conformal radiotherapy for prostate cancer. Radiother Oncol 70:37–44PubMedCrossRefGoogle Scholar
  45. 45.
    Drzymala M, Hawkins MA, Henrys AJ et al (2009) The effect of treatment position, prone or supine, on dose-volume histograms for pelvic radiotherapy in patients with rectal cancer. Br J Radiol 82:321–327PubMedCrossRefGoogle Scholar
  46. 46.
    Syk E, Torkzad MR, Blomqvist L et al (2006) Radiological findings do not support lateral residual tumour as a major cause of local recurrence of rectal cancer. Br J Surg 93:113–119PubMedCrossRefGoogle Scholar
  47. 47.
    Syk E, Torkzad MR, Blomqvist L et al (2008) Local recurrence in rectal cancer: anatomic localization and effect on radiation target. Int J Radiat Oncol Biol Phys 72(3):658–664PubMedCrossRefGoogle Scholar
  48. 48.
    Chien CR, Chen SW, Chen WT (2009) Radiation fields of neoadjuvant concurrent chemoradiotherapy for rectal cancer: in response to Yu et al. (Int J Radat Oncol Biol Phys 2008;71:1175–1180). Int J Radiat Oncol Biol Phys 73:639PubMedCrossRefGoogle Scholar
  49. 49.
    Nijkamp J, Kusters M, Beets-Tan RG et al (2011) Three-dimensional analysis of recurrence patterns in rectal cancer: the cranial border in hypofractionated preoperative radiotherapy can be lowered. Int J Radiat Oncol Biol Phys 80:103–110PubMedCrossRefGoogle Scholar
  50. 50.
    Robertson JM, Campbell JP, Yan D (2009) Generic planning target margin for rectal cancer treatment setup variation. Int J Radiat Oncol Biol Phys 74:1470–1475PubMedCrossRefGoogle Scholar
  51. 51.
    Nijkamp J, de Jong R, Sonke JJ et al (2009) Target volume shape variation during hypo-fractionated preoperative irradiation of rectal cancer patients. Radiother Oncol 92:202–209PubMedCrossRefGoogle Scholar
  52. 52.
    Nijkamp J, de Jong R, Sonke JJ et al (2009) Target volume shape variation during irradiation of rectal cancer patients in supine position; comparison with prone position. Radiother Oncol 93:285–292PubMedCrossRefGoogle Scholar
  53. 53.
    Tournel K, de Ridder M, Engels B et al (2008) Assessment of intrafractional movement and internal motion in radiotherapy of rectal cancer using megavoltage computer tomography. Int J Radiat Oncol Biol Phys 71:934–939PubMedCrossRefGoogle Scholar
  54. 54.
    Bel A, van Herk M, Bartelink H, Lebesque JV (1993) A verification procedure to improve patient set-up accuracy using portal images. Radiother Oncol 29:253–260PubMedCrossRefGoogle Scholar
  55. 55.
    de Boer HC, Heijmen BJ (2007) eNAL: an extension of the NAL setup correction protocol for effective use of weekly follow-up measurements. Int J Radiat Oncol Biol Phys 67:1586–1595PubMedCrossRefGoogle Scholar
  56. 56.
    Nuyttens J, Robertson J, Yan D et al (2002) The variability of the clinical target volume for rectal cancer due to internal organ motion during adjuvant treatment. Int J Radiat Oncol Biol Phys 53:497–503PubMedCrossRefGoogle Scholar
  57. 57.
    Nijkamp J, Swellengrebel M, Hollmann B et al (2012) Repeat CT assessed CTV variation and PTV margins for short- and long-course pre-operative RT of rectal cancer. Radiother Oncol 102(3):399–405.Google Scholar
  58. 58.
    Stroom JC, de Boer HC, Huizinga H et al (1999) Inclusion of geometrical uncertainties in radiotherapy treatment planning by means of coverage probability. Int J Radiat Oncol Biol Phys 43:905–919PubMedCrossRefGoogle Scholar
  59. 59.
    McKenzie A (2004) Defining the PTV and PRV – new ideas about old problems. Radiother Oncol ESTRO 73:s203:455Google Scholar
  60. 60.
    van Kranen SR, van Herk M, Sonke J-J (2008) Margin design for deforming and differential moving target volumes. Radiother Oncol ESTRO 88:s154:446Google Scholar
  61. 61.
    Weiss E, Hess CF (2003) The impact of gross tumor volume and clinical target volume definition on the total accuracy in radiotherapy. Strahlenther Onkol 179:21–30PubMedCrossRefGoogle Scholar
  62. 62.
    Yan D, Lockman D, Brabbins D et al (2000) An off-line strategy for constructing a patient-specific planning target volume in adaptive treatment process for prostate cancer. Int J Radiat Oncol Biol Phys 48:289–302PubMedCrossRefGoogle Scholar
  63. 63.
    Capirci C, Rubello C, Chierichetti F et al (2006) Long-term prognostic value of 18F-FDG PET in patients with locally advanced rectal cancer previously treated with neoadjuvant radiochemotherapy. AJR Am J Roentgenol 187:W202–W208PubMedCrossRefGoogle Scholar
  64. 64.
    Capirci C, Rampin L, Erba PA et al (2007) Sequential FDG-PET/CT reliably predicts response of locally advanced rectal cancer to neo-adjuvant chemo-radiation therapy. Eur J Nucl Med Mol Imaging 34:1583–1593PubMedCrossRefGoogle Scholar
  65. 65.
    Valentini V, Coco C, Cellini N et al (1999) Preoperative chemoradiation with cisplatin and 5-fluorouracil for extraperitoneal T3 rectal cancer: acute toxicity, tumor response, sphincter preservation. Int J Radiat Oncol Biol Phys 45:1175–1184PubMedCrossRefGoogle Scholar
  66. 66.
    Vliegen RF, Beets-Tan RG, Vanhauten B et al (2008) Can an FDG-PET/CT predict tumor clearance of the mesorectal fascia after preoperative chemoradiation of locally advanced rectal cancer? Strahlenther Onkol 184:457–464PubMedCrossRefGoogle Scholar
  67. 67.
    Maas M, Nelemans PJ, Valentini V et al (2010) Long-term outcome in patients with a pathological complete response after chemoradiation for rectal cancer: a pooled analysis of individual patient data. Lancet Oncol 11:835–844PubMedCrossRefGoogle Scholar
  68. 68.
    Vecchio FM, Valentini V, Minsky BD et al (2005) The relationship of pathologic tumor regression grade (TRG) and outcomes after preoperative therapy in rectal cancer. Int J Radiat Oncol Biol Phys 62:752–760PubMedCrossRefGoogle Scholar
  69. 69.
    Barbaro B, Fiorucci C, Tebala C et al (2009) Locally advanced rectal cancer: MR imaging in prediction of response after preoperative chemotherapy and radiation therapy. Radiology 250:730–739PubMedCrossRefGoogle Scholar
  70. 70.
    Juweid ME, Cheson BD (2006) Positron-emission tomography and assessment of cancer therapy. N Engl J Med 354:496–507PubMedCrossRefGoogle Scholar
  71. 71.
    Koh DM, Collins DJ (2007) Diffusion-weighted MRI in the body: applications and challenges in oncology. AJR Am J Roentgenol 188:1622–1635PubMedCrossRefGoogle Scholar
  72. 72.
    Capirci C, Rubello D, Chierichetti F et al (2004) Restaging after neoadjuvant chemoradiotherapy for rectal adenocarcinoma: role of F18-FDG PET. Biomed Pharmacother 58:451–457PubMedGoogle Scholar
  73. 73.
    Capirci C, Rubello D, Pasini F et al (2009) The role of dual-time combined 18Fluorodeoxyglucose positron emission tomography and computed tomography in the staging and restaging workup of locally advanced rectal cancer, treated with preoperative chemoradiation therapy and radical surgery. Int J Radiat Oncol Biol Phys 74:1461–1469PubMedCrossRefGoogle Scholar
  74. 74.
    Cascini GL, Avallone A, Delrio P et al (2006) 18F-FDG PET is an early predictor of pathologic tumor response to preoperative radiochemotherapy in locally advanced rectal cancer. J Nucl Med 47:1241–1248PubMedGoogle Scholar
  75. 75.
    Janssen MH, Ollers MC, Riedl RG et al (2010) Accurate prediction of pathological rectal tumor response after two weeks of preoperative radiochemotherapy using 18F-fluorodeoxyglucose-positron emission tomography-computed tomography imaging. Int J Radiat Oncol Biol Phys 77:392–399PubMedCrossRefGoogle Scholar
  76. 76.
    Janssen MH, Ollers MC, van Stiphout RG et al (2010) Evaluation of early metabolic responses in rectal cancer during combined radiochemotherapy or radiotherapy alone: sequential FDG-PET-CT findings. Radiother Oncol 94:151–155PubMedCrossRefGoogle Scholar
  77. 77.
    Mak D, Joon DL, Chao M et al (2010) The use of PET in assessing tumor response after neoadjuvant chemoradiation for rectal cancer. Radiother Oncol 97:205–211PubMedCrossRefGoogle Scholar
  78. 78.
    Rosenberg R, Herrmann K, Gertler R et al (2009) The predictive value of metabolic response to preoperative radiochemotherapy in locally advanced rectal cancer measured by PET/CT. Int J Colorectal Dis 24:191–200PubMedCrossRefGoogle Scholar
  79. 79.
    Yoon MS, Ahn SJ, Nah BS et al (2011) The metabolic response using 18F-fluorodeoxyglucose-positron emission tomography/computed tomography and the change in the carcinoembryonic antigen level for predicting response to pre-operative chemoradiotherapy in patients with rectal cancer. Radiother Oncol 98:134–138PubMedCrossRefGoogle Scholar
  80. 80.
    Janssen MH, Ollers MC, van Stiphout RG et al (2011) PET-based treatment response evaluation in rectal cancer: prediction and validation. Int J Radiat Oncol Biol Phys. doi:  10.1016/j.ijrobp.2010.11.038
  81. 81.
    van Stiphout RG, Lammering G, Buijsen J et al (2011) Development and external validation of a predictive model for pathological complete response of rectal cancer patients including sequential PET-CT imaging. Radiother Oncol 98:126–133PubMedCrossRefGoogle Scholar
  82. 82.
    Vandecaveye V, de Keyzer F, Nuyts S et al (2007) Detection of head and neck squamous cell carcinoma with diffusion weighted MRI after (chemo)radiotherapy: correlation between radiologic and histopathologic findings. Int J Radiat Oncol Biol Phys 67:960–971PubMedCrossRefGoogle Scholar
  83. 83.
    Abdel Razek AA, Kandeel AY, Soliman N et al (2007) Role of diffusion-weighted echo-planar MR imaging in differentiation of residual or recurrent head and neck tumors and posttreatment changes. AJNR Am J Neuroradiol 28:1146–1152PubMedCrossRefGoogle Scholar
  84. 84.
    Dzik-Jurasz A, Domenig C, George M et al (2002) Diffusion MRI for prediction of response of rectal cancer to chemoradiation. Lancet 360:307–308PubMedCrossRefGoogle Scholar
  85. 85.
    Lambrecht M, Vandecaveye V, de Keyzer F et al (2011) Value of diffusion-weighted magnetic resonance imaging for prediction and early assessment of response to neoadjuvant radiochemotherapy in rectal cancer: preliminary results. Int J Radiat Oncol Biol Phys. doi: 10.1016/j.ijrobp.2010.12.063
  86. 86.
    Sun YS, Zhang XP, Tang L et al (2010) Locally advanced rectal carcinoma treated with preoperative chemotherapy and radiation therapy: preliminary analysis of diffusion-weighted MR imaging for early detection of tumor histopathologic downstaging. Radiology 254:170–178PubMedCrossRefGoogle Scholar
  87. 87.
    Lambregts DM, Vandecaveye V, Barbaro B et al (2011) Diffusion-weighted MRI for selection of complete responders after chemoradiation for locally advanced rectal cancer: a multicenter study. Ann Surg Oncol 18:2224–2231PubMedCrossRefGoogle Scholar
  88. 88.
    Majno G, Joris I (1995) Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol 146:3–15PubMedGoogle Scholar
  89. 89.
    Padhani AR, Liu G, Koh DM et al (2009) Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia 11:102–125PubMedGoogle Scholar
  90. 90.
    Viani GA, Stefano EJ, Soares FV, Afonso SL (2011) Evaluation of biologic effective dose and schedule of fractionation for preoperative radiotherapy for rectal cancer: meta-analyses and meta-regression. Int J Radiat Oncol Biol Phys 80:985–991PubMedCrossRefGoogle Scholar
  91. 91.
    Tepper JE, Wang AZ (2010) Improving local control in rectal cancer: radiation sensitizers or radiation dose. J Clin Oncol 28:1623–1632PubMedCrossRefGoogle Scholar
  92. 92.
    Wiltshire KL, Ward IG, Swallow C et al (2006) Preoperative radiation with concurrent chemotherapy for resectable rectal cancer: effect of dose escalation on pathologic complete response, local recurrence-free survival, disease-free survival, and overall survival. Int J Radiat Oncol Biol Phys 64:709–716PubMedCrossRefGoogle Scholar
  93. 93.
    Gerard J-P, Chapet O, Nemoz C et al (2004) Improved sphincter preservation in low rectal cancer with high-dose preoperative radiotherapy: the Lyon R96–02 randomized trial. J Clin Oncol 22:2404–2409PubMedCrossRefGoogle Scholar
  94. 94.
    Yang Y, Xing L (2005) Towards biologically conformal radiation therapy (BCRT): selective IMRT dose escalation under the guidance of spatial biology distribution. Med Phys 32:1473–1484PubMedCrossRefGoogle Scholar
  95. 95.
    Lambrecht M, Haustermans K (2010) Clinical evidence on PET-CT for radiation therapy planning in gastro-intestinal tumors. Radiother Oncol 96:339–346PubMedCrossRefGoogle Scholar
  96. 96.
    Roels S, Slagmolen P, Nuyts J et al (2009) Biological image-guided radiotherapy in rectal cancer: challenges and pitfalls. Int J Radiat Oncol Biol Phys 75:782–790PubMedCrossRefGoogle Scholar
  97. 97.
    Ciernik IF, Huser M, Burger C et al (2005) Automated functional image-guided radiation treatment planning for rectal cancer. Int J Radiat Oncol Biol Phys 62:893–900PubMedCrossRefGoogle Scholar
  98. 98.
    Roels S, Haustermans K, Gregoire V, In regard to Ciernik et al (2006) Automated functional image-guided radiation treatment planning for rectal cancer. Int J Radiat Oncol Biol Phys 64:1611–1615Google Scholar
  99. 99.
    International Commission on Radiation Units and Measurements ICRU Report 62 (1999) Prescribing, recording, and reporting photon beam therapy (Supplement to ICRU report 50). ICRU, BethesdaGoogle Scholar
  100. 100.
    Patel DA, Chang ST, Goodman KA (2007) Impact of integrated PET/CT on variability of target volume delineation in rectal cancer. Technol Cancer Res Treat 6:31–36PubMedGoogle Scholar
  101. 101.
    Muijs CT, Beukema JC, Widder J et al (2011) 18F-FLT-PET for detection of rectal cancer. Radiother Oncol 98:357–359PubMedCrossRefGoogle Scholar
  102. 102.
    Buijsen J, van den Bogaard J, Janssen MH et al (2011) FDG-PET provides the best correlation with the tumor specimen compared to MRI and CT in rectal cancer. Radiother Oncol 98:270–276PubMedCrossRefGoogle Scholar
  103. 103.
    Vorwerk H, Liersch T, Rothe H et al (2009) Gold markers for tumor localization and target volume delineation in radiotherapy for rectal cancer. Strahlenther Onkol 185:127–133PubMedCrossRefGoogle Scholar
  104. 104.
    Cummings BJ (2007) Is there a limit to dose escalation for rectal cancer? Clin Oncol 19:730–737CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jasper Nijkamp
    • 1
  • Karin Haustermans
    • 2
  • Corrie A. M. Marijnen
    • 3
  1. 1.Department of Radiation OncologyThe Netherlands Cancer Institute – Antoni van Leeuwenhoek HospitalAmsterdamThe Netherlands
  2. 2.Department of Radiation OncologyLeuven Cancer Institute, University Hospital GasthuisbergLeuvenBelgium
  3. 3.Department of Clinical OncologyLeiden University Medical CenterLeidenThe Netherlands

Personalised recommendations