Advertisement

Goal of Therapy and Monitoring the Response in Polycythemia Vera and Essential Thrombocythemia

  • Jean-Jacques Kiladjian
Chapter
Part of the Hematologic Malignancies book series (HEMATOLOGIC)

Abstract

Polycythemia vera (PV) and essential thrombocythemia (ET) are the most indolent Philadelphia-negative myeloproliferative neoplasms (MPN). In fact, several studies have shown that life expectancy in ET is almost similar to that of the general age- and sex-matched population, but life expectancy of PV patients is however significantly altered, especially after the first decade of follow-up (Passamonti et al. 2004; Cervantes et al. 2008). Evolution of PV and ET is characterized by a short-term risk of vascular complications (thrombosis and hemorrhages) and a longer-term risk of evolution to myelofibrosis (MF), myelodysplastic syndromes (MDS), or acute myeloid leukemia (AML). However, in a recent retrospective study from the Swedish Cancer Registry that included 4,389 and 2,559 patients with a diagnosis of PV and ET, respectively, a significant overall excess mortality compared to reference population was found (Bjorkholm et al. 2011). Contrary to high-risk MF where treatment aims to prolong survival that may require therapies with high risks of complications, current therapeutic strategies in PV and ET are based on the risk of thrombosis, aiming to reduce mortality and morbidity due to vascular events (Barbui et al. 2011a).

Keywords

Acute Myeloid Leukemia Vascular Complication Polycythemia Vera Interferon Alpha Essential Thrombocythemia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Agrawal M, Garg RJ et al (2011) Experimental therapeutics for patients with myeloproliferative neoplasias. Cancer 117(4):662–676PubMedCrossRefGoogle Scholar
  2. Barbui T, Carobbio A et al (2009) Perspectives on thrombosis in essential thrombocythemia and polycythemia vera: is leukocytosis a causative factor? Blood 114(4):759–763PubMedGoogle Scholar
  3. Barbui T, Barosi G et al (2011a) Philadelphia-negative classical myeloproliferative neoplasms: critical concepts and management recommendations from European LeukemiaNet. J Clin Oncol 29(6):761–770PubMedCrossRefGoogle Scholar
  4. Barbui T, Thiele J et al (2011b) Survival and disease progression in essential thrombocythemia are significantly influenced by accurate morphologic diagnosis: an international study. J Clin Oncol 29:3179–3184PubMedCrossRefGoogle Scholar
  5. Barosi G, Birgegard G et al (2009) Response criteria for essential thrombocythemia and polycythemia vera: result of a European LeukemiaNet consensus conference. Blood 113(20):4829–4833PubMedCrossRefGoogle Scholar
  6. Barosi G, Birgegard G et al (2010) A unified definition of clinical resistance and intolerance to hydroxycarbamide in polycythaemia vera and primary myelofibrosis: results of a European LeukemiaNet (ELN) consensus process. Br J Haematol 148(6):961–963PubMedCrossRefGoogle Scholar
  7. Beer PA, Erber WN et al (2011) How I treat essential thrombocythemia. Blood 117(5):1472–1482PubMedCrossRefGoogle Scholar
  8. Berk PD, Goldberg JD et al (1986) Therapeutic recommendations in polycythemia vera based on Polycythemia Vera Study Group protocols. Semin Hematol 23(2):132–143PubMedGoogle Scholar
  9. Berk PD, Wasserman L et al (1995) Treatment of polycythaemia vera, a summary of clinical trends conducted by the polycythaemia vera sub-group. In: Wasserman L, Berk PD (eds) Treatment of polycythaemia vera, a summary of clinical trends conducted by the Polycythaemia Vera Study Group. W.B. Saunders, Philadelphia, pp 166–194Google Scholar
  10. Besses C, Cervantes F et al (1999) Major vascular complications in essential thrombocythemia: a study of the predictive factors in a series of 148 patients. Leukemia 13(2):150–154PubMedCrossRefGoogle Scholar
  11. Birgegard G (2006) Anagrelide treatment in myeloproliferative disorders. Semin Thromb Hemost 32(3):260–266PubMedCrossRefGoogle Scholar
  12. Bjorkholm M, Derolf AR et al (2011) Treatment-related risk factors for transformation to acute myeloid leukemia and myelodysplastic syndromes in myeloproliferative neoplasms. J Clin Oncol 29(17):2410–2415PubMedCrossRefGoogle Scholar
  13. Campbell PJ, Green AR (2006) The myeloproliferative disorders. N Engl J Med 355(23):2452–2466PubMedCrossRefGoogle Scholar
  14. Carobbio A, Antonioli E et al (2008a) Leukocytosis and risk stratification assessment in essential thrombocythemia. J Clin Oncol 26(16):2732–2736PubMedCrossRefGoogle Scholar
  15. Carobbio A, Finazzi G et al (2008b) Thrombocytosis and leukocytosis interaction in vascular complications of essential thrombocythemia. Blood 112(8):3135–3137PubMedCrossRefGoogle Scholar
  16. Carobbio A, Finazzi G et al (2010) Hydroxyurea in essential thrombocythemia: rate and clinical relevance of responses by European LeukemiaNet criteria. Blood 116(7):1051–1055PubMedCrossRefGoogle Scholar
  17. Cassinat B, Laguillier C et al (2008) Classification of myeloproliferative disorders in the JAK2 era: is there a role for red cell mass? Leukemia 22(2):452–453PubMedCrossRefGoogle Scholar
  18. Cervantes F, Passamonti F et al (2008) Life expectancy and prognostic factors in the classic BCR/ABL-negative myeloproliferative disorders. Leukemia 22(5):905–914PubMedCrossRefGoogle Scholar
  19. Cortelazzo S, Finazzi G et al (1995) Hydroxyurea for patients with essential thrombocythemia and a high risk of thrombosis. N Engl J Med 332(17):1132–1136PubMedCrossRefGoogle Scholar
  20. Di Nisio M, Barbui T et al (2007) The haematocrit and platelet target in polycythemia vera. Br J Haematol 136(2):249–259PubMedCrossRefGoogle Scholar
  21. Elliott MA, Tefferi A (2005) Thrombosis and haemorrhage in polycythaemia vera and essential thrombocythaemia. Br J Haematol 128(3):275–290PubMedCrossRefGoogle Scholar
  22. Fenaux P, Simon M et al (1990) Clinical course of essential thrombocythemia in 147 cases. Cancer 66(3):549–556PubMedCrossRefGoogle Scholar
  23. Finazzi G, Barbui T (2007) How I treat patients with polycythemia vera. Blood 109(12):5104–5111PubMedCrossRefGoogle Scholar
  24. Finazzi G, Caruso V et al (2005) Acute leukemia in polycythemia vera: an analysis of 1638 patients enrolled in a prospective observational study. Blood 105(7):2664–2670PubMedCrossRefGoogle Scholar
  25. Gangat N, Wolanskyj AP et al (2009) Leukocytosis at diagnosis and the risk of subsequent thrombosis in patients with low-risk essential thrombocythemia and polycythemia vera. Cancer 115(24):5740–5745PubMedCrossRefGoogle Scholar
  26. Harrison CN, Campbell PJ et al (2005) Hydroxyurea compared with anagrelide in high-risk essential thrombocythemia. N Engl J Med 353(1):33–45PubMedCrossRefGoogle Scholar
  27. Kiladjian JJ, Gardin C et al (2003) Long-term outcomes of polycythemia vera patients treated with pipobroman as initial therapy. Hematol J 4(3):198–207PubMedCrossRefGoogle Scholar
  28. Kiladjian JJ, Rain JD et al (2006) Long-term incidence of hematological evolution in three French prospective studies of hydroxyurea and pipobroman in polycythemia vera and essential thrombocythemia. Semin Thromb Hemost 32(4 Pt 2):417–421PubMedCrossRefGoogle Scholar
  29. Kiladjian JJ, Cassinat B et al (2008a) Pegylated interferon-alfa-2a induces complete hematologic and molecular responses with low toxicity in polycythemia vera. Blood 112(8):3065–3072PubMedCrossRefGoogle Scholar
  30. Kiladjian JJ, Cervantes F et al (2008b) The impact of JAK2 and MPL mutations on diagnosis and prognosis of splanchnic vein thrombosis: a report on 241 cases. Blood 111(10):4922–4929PubMedCrossRefGoogle Scholar
  31. Kiladjian JJ, Masse A et al (2010) Clonal analysis of erythroid progenitors suggests that pegylated interferon alpha-2a treatment targets JAK2V617F clones without affecting TET2 mutant cells. Leukemia 24(8):1519–1523PubMedCrossRefGoogle Scholar
  32. Kiladjian JJ, Mesa RA et al (2011a) The renaissance of interferon therapy for the treatment of myeloid malignancies. Blood 117(18):4706–4715PubMedCrossRefGoogle Scholar
  33. Kiladjian JJ et al (2011b) Treatment of polycythemia vera with hydroxyurea and pipobroman: final results of a randomized trial initiated in 1980. J Clin Oncol 29(29):3907–3913Google Scholar
  34. Klampfl T, Harutyunyan A et al (2011) Genome integrity of myeloproliferative neoplasms in chronic phase and during disease progression. Blood 118(1):167–176PubMedCrossRefGoogle Scholar
  35. Larsen TS, Moller MB et al (2009) Minimal residual disease and normalization of the bone marrow after long-term treatment with alpha-interferon2b in polycythemia vera. A report on molecular response patterns in seven patients in sustained complete hematological remission. Hematology 14(6):331–334PubMedCrossRefGoogle Scholar
  36. Mesa RA, Niblack J et al (2007) The burden of fatigue and quality of life in myeloproliferative disorders (MPDs): an international Internet-based survey of 1179 MPD patients. Cancer 109(1):68–76PubMedCrossRefGoogle Scholar
  37. Najean Y, Rain JD (1997) Treatment of polycythemia vera: the use of hydroxyurea and pipobroman in 292 patients under the age of 65 years. Blood 90(9):3370–3377PubMedGoogle Scholar
  38. Pardanani A, Vannucchi AM et al (2011) JAK inhibitor therapy for myelofibrosis: critical assessment of value and limitations. Leukemia 25(2):218–225PubMedCrossRefGoogle Scholar
  39. Passamonti F, Rumi E et al (2004) Life expectancy and prognostic factors for survival in patients with polycythemia vera and essential thrombocythemia. Am J Med 117(10):755–761PubMedCrossRefGoogle Scholar
  40. Pearson TC, Wetherley-Mein G (1978) Vascular occlusive episodes and venous haematocrit in primary proliferative polycythaemia. Lancet 2(8102):1219–1222PubMedCrossRefGoogle Scholar
  41. Quintas-Cardama A, Kantarjian H et al (2009) Pegylated interferon alfa-2a yields high rates of hematologic and molecular response in patients with advanced essential thrombocythemia and polycythemia vera. J Clin Oncol 27(32):5418–5424PubMedCrossRefGoogle Scholar
  42. Schafer AI (2004) Thrombocytosis. N Engl J Med 350(12):1211–1219PubMedCrossRefGoogle Scholar
  43. Schafer AI (2006) Molecular basis of the diagnosis and treatment of polycythemia vera and essential thrombocythemia. Blood 107(11):4214–4222PubMedCrossRefGoogle Scholar
  44. Scherber R, Dueck AC et al (2011) The Myeloproliferative Neoplasm Symptom Assessment Form (MPN-SAF): International Prospective Validation and Reliability Trial in 402 patients. Blood 118(2):401–408PubMedCrossRefGoogle Scholar
  45. Silver RT, Vandris K (2009) Recombinant interferon alpha (rIFN alpha-2b) may retard progression of early primary myelofibrosis. Leukemia 23(7):1366–1369PubMedCrossRefGoogle Scholar
  46. Spivak JL (2002) Polycythemia vera: myths, mechanisms, and management. Blood 100(13):4272–4290PubMedCrossRefGoogle Scholar
  47. Tefferi A, Thiele J et al (2007) Proposals and rationale for revision of the World Health Organization diagnostic criteria for polycythemia vera, essential thrombocythemia, and primary myelofibrosis: recommendations from an ad hoc international expert panel. Blood 110(4):1092–1097PubMedCrossRefGoogle Scholar
  48. Vannucchi AM, Antonioli E et al (2007) Clinical profile of homozygous JAK2 617V>F mutation in patients with polycythemia vera or essential thrombocythemia. Blood 110(3):840–846PubMedCrossRefGoogle Scholar
  49. Verstovsek S, Kantarjian H et al (2010) Safety and efficacy of INCB018424, a JAK1 and JAK2 inhibitor, in myelofibrosis. N Engl J Med 363(12):1117–1127PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Clinical Investigations CenterSaint-Louis Hospital and Paris Diderot UniversityParisFrance

Personalised recommendations