Advertisement

Update on the Biology of Myeloproliferative Neoplasms

  • Robert Kralovics
Chapter
Part of the Hematologic Malignancies book series (HEMATOLOGIC)

Abstract

Single cell origin of hematopoiesis is considered to be a hallmark of all myeloid malignancies. In hematological malignancies, the mutations initiating stem cell clonality can have various forms such as translocated chromosomes, chromosomes with deleted or amplified regions, or point mutations in single genes. Once a stem cell clone has been established, it expands and its progeny competes with healthy cells for “habitat” in the bone marrow microenvironment. As the clone expands, more mutagenesis occurs in the next generation of cells. Although vast majority of these newly acquired genomic mutations do not provide any benefit to the clone, some lesions may prove to be useful and provide a selective advantage. Therefore, selection is the main driving force that shapes the cancer genome in the given environment. Different tissues have different selective forces that evolve the cancer genome. In hematological malignancies, the stem cell clone of each patient takes on a unique evolutionary path even though the accompanying genetic defects are often recurrently detected when many myeloid cancer genomes are compared. The mutations acquired in the evolution of the myeloid cancer genome and their combined effects may have different influence on the differentiation dynamics of the hematopoietic progenitors. Some mutations reduce and others may increase the output of the terminally differentiated cells. Each clonal evolution has a certain phenotypic outcome often detectable by differential blood count and histopathologic evaluation of the bone marrow. The clinical classification of these different phenotypic outcomes provided the foundations for diagnosis in the past. Inclusion of the genetic defects that associate with certain clinical entity into the diagnosis has brought significant improvements in the diagnostic process. The developments in the field of myeloproliferative neoplasms (MPN) in the past decade are an excellent example of this process.

Keywords

TP53 Mutation Polycythemia Vera Essential Thrombocythemia Myeloproliferative Neoplasm Myeloid Malignancy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abdel-Wahab O, Manshouri T, Patel J, Harris K, Yao J, Hedvat C, Heguy A, Bueso-Ramos C, Kantarjian H, Levine RL et al (2010) Genetic analysis of transforming events that convert chronic myeloproliferative neoplasms to leukemias. Cancer Res 70:447–452PubMedCrossRefGoogle Scholar
  2. Abdel-Wahab O, Pardanani A, Rampal R, Lasho TL, Levine RL, Tefferi A (2011) DNMT3A mutational analysis in primary myelofibrosis, chronic myelomonocytic leukemia and advanced phases of myeloproliferative neoplasms. Leukemia 25(7):1219–1220PubMedCrossRefGoogle Scholar
  3. Andrulis M, Capper D, Meyer J, Penzel R, Hartmann C, Zentgraf H, von Deimling A (2010) IDH1 R132H mutation is a rare event in myeloproliferative neoplasms as determined by a mutation specific antibody. Haematologica 95:1797–1798PubMedCrossRefGoogle Scholar
  4. Baxter EJ, Scott LM, Campbell PJ, East C, Fourouclas N, Swanton S, Vassiliou GS, Bench AJ, Boyd EM, Curtin N et al (2005) Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 365:1054–1061PubMedGoogle Scholar
  5. Beer PA, Campbell PJ, Scott LM, Bench AJ, Erber WN, Bareford D, Wilkins BS, Reilly JT, Hasselbalch HC, Bowman R et al (2008) MPL mutations in myeloproliferative disorders: analysis of the PT-1 cohort. Blood 112(1):141–149PubMedCrossRefGoogle Scholar
  6. Beer PA, Delhommeau F, LeCouedic JP, Dawson MA, Chen E, Bareford D, Kusec R, McMullin MF, Harrison CN, Vannucchi AM et al (2009) Two routes to leukemic transformation after a JAK2 mutation-positive myeloproliferative neoplasm. Blood 115:2891–2900PubMedCrossRefGoogle Scholar
  7. Bjorkholm M, Derolf AR, Hultcrantz M, Kristinsson SY, Ekstrand C, Goldin LR, Andreasson B, Birgegard G, Linder O, Malm C et al (2011) Treatment-related risk factors for transformation to acute myeloid leukemia and myelodysplastic syndromes in myeloproliferative neoplasms. J Clin Oncol 29:2410–2415PubMedCrossRefGoogle Scholar
  8. Delhommeau F, Dupont S, Della Valle V, James C, Trannoy S, Masse A, Kosmider O, Le Couedic JP, Robert F, Alberdi A et al (2009) Mutation in TET2 in myeloid cancers. N Engl J Med 360:2289–2301PubMedCrossRefGoogle Scholar
  9. Ding Y, Harada Y, Imagawa J, Kimura A, Harada H (2009) AML1/RUNX1 point mutation possibly promotes leukemic transformation in myeloproliferative neoplasms. Blood 114:5201–5205PubMedCrossRefGoogle Scholar
  10. Dunbar AJ, Gondek LP, O’Keefe CL, Makishima H, Rataul MS, Szpurka H, Sekeres MA, Wang XF, McDevitt MA, Maciejewski JP (2008) 250 K single nucleotide polymorphism array karyotyping identifies acquired uniparental disomy and homozygous mutations, including novel missense substitutions of c-Cbl, in myeloid malignancies. Cancer Res 68:10349–10357PubMedCrossRefGoogle Scholar
  11. Ernst T, Chase AJ, Score J, Hidalgo-Curtis CE, Bryant C, Jones AV, Waghorn K, Zoi K, Ross FM, Reiter A et al (2010) Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nat Genet 42:722–726PubMedCrossRefGoogle Scholar
  12. Gery S, Cao Q, Gueller S, Xing H, Tefferi A, Koeffler HP (2009) Lnk inhibits myeloproliferative disorder-associated JAK2 mutant, JAK2V617F. J Leukoc Biol 85:957–965PubMedCrossRefGoogle Scholar
  13. Grand FH, Hidalgo-Curtis CE, Ernst T, Zoi K, Zoi C, McGuire C, Kreil S, Jones A, Score J, Metzgeroth G et al (2009) Frequent CBL mutations associated with 11q acquired uniparental disomy in myeloproliferative neoplasms. Blood 113:6182–6192PubMedCrossRefGoogle Scholar
  14. Green A, Beer P (2010) Somatic mutations of IDH1 and IDH2 in the leukemic transformation of myeloproliferative neoplasms. N Engl J Med 362:369–370PubMedCrossRefGoogle Scholar
  15. Harutyunyan A, Gisslinger B, Klampfl T, Berg T, Bagienski K, Gisslinger H, Kralovics R (2011a) Rare germline variants in regions of loss of heterozygosity may influence clinical course of hematological malignancies. Leukemia 12:1782–1784Google Scholar
  16. Harutyunyan A, Klampfl T, Cazzola M, Kralovics R (2011b) p53 lesions in leukemic transformation. N Engl J Med 364:488–490PubMedCrossRefGoogle Scholar
  17. Jager R, Gisslinger H, Passamonti F, Rumi E, Berg T, Gisslinger B, Pietra D, Harutyunyan A, Klampfl T, Olcaydu D et al (2010) Deletions of the transcription factor Ikaros in myeloproliferative neoplasms. Leukemia 24:1290–1298PubMedCrossRefGoogle Scholar
  18. James C, Ugo V, Le Couedic JP, Staerk J, Delhommeau F, Lacout C, Garcon L, Raslova H, Berger R, Bennaceur-Griscelli A et al (2005) A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 434:1144–1148PubMedCrossRefGoogle Scholar
  19. Jones AV, Chase A, Silver RT, Oscier D, Zoi K, Wang YL, Cario H, Pahl HL, Collins A, Reiter A et al (2009) JAK2 haplotype is a major risk factor for the development of myeloproliferative neoplasms. Nat Genet 41:446–449PubMedCrossRefGoogle Scholar
  20. Jost E, do ON, Dahl E, Maintz CE, Jousten P, Habets L, Wilop S, Herman JG, Osieka R, Galm O (2007) Epigenetic alterations complement mutation of JAK2 tyrosine kinase in patients with BCR/ABL-negative myeloproliferative disorders. Leukemia 21:505–510PubMedCrossRefGoogle Scholar
  21. Kilpivaara O, Mukherjee S, Schram AM, Wadleigh M, Mullally A, Ebert BL, Bass A, Marubayashi S, Heguy A, Garcia-Manero G et al (2009) A germline JAK2 SNP is associated with predisposition to the development of JAK2(V617F)-positive myeloproliferative neoplasms. Nat Genet 41:455–459PubMedCrossRefGoogle Scholar
  22. Klampfl T, Harutyunyan A, Berg T, Gisslinger B, Schalling M, Bagienski K, Olcaydu D, Passamonti F, Rumi E, Pietra D et al (2011) Genome integrity of myeloproliferative neoplasms in chronic phase and during disease progression. Blood 118:167–176PubMedCrossRefGoogle Scholar
  23. Kosmider O, Gelsi-Boyer V, Slama L, Dreyfus F, Beyne-Rauzy O, Quesnel B, Hunault-Berger M, Slama B, Vey N, Lacombe C et al (2010) Mutations of IDH1 and IDH2 genes in early and accelerated phases of myelodysplastic syndromes and MDS/myeloproliferative neoplasms. Leukemia 24:1094–1096PubMedCrossRefGoogle Scholar
  24. Kralovics R (2008) Genetic complexity of myeloproliferative neoplasms. Leukemia 22:1841–1848PubMedCrossRefGoogle Scholar
  25. Kralovics R, Passamonti F, Buser AS, Teo SS, Tiedt R, Passweg JR, Tichelli A, Cazzola M, Skoda RC (2005) A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med 352:1779–1790PubMedCrossRefGoogle Scholar
  26. Levine RL, Wadleigh M, Cools J, Ebert BL, Wernig G, Huntly BJ, Boggon TJ, Wlodarska I, Clark JJ, Moore S et al (2005) Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 7:387–397PubMedCrossRefGoogle Scholar
  27. Lin P, Jones D, Medeiros LJ, Chen W, Vega-Vazquez F, Luthra R (2006) Activating FLT3 mutations are detectable in chronic and blast phase of chronic myeloproliferative disorders other than chronic myeloid leukemia. Am J Clin Pathol 126:530–533PubMedCrossRefGoogle Scholar
  28. Nicola NA, Nicholson SE, Metcalf D, Zhang JG, Baca M, Farley A, Willson TA, Starr R, Alexander W, Hilton DJ (1999) Negative regulation of cytokine signaling by the SOCS proteins. Cold Spring Harb Symp Quant Biol 64:397–404PubMedCrossRefGoogle Scholar
  29. Ogawa S, Sanada M, Shih LY, Suzuki T, Otsu M, Nakauchi H, Koeffler HP (2010a) Gain-of-function c-CBL mutations associated with uniparental disomy of 11q in myeloid neoplasms. Cell Cycle 9:1051–1056PubMedCrossRefGoogle Scholar
  30. Ogawa S, Shih LY, Suzuki T, Otsu M, Nakauchi H, Koeffler HP, Sanada M (2010b) Deregulated intracellular signaling by mutated c-CBL in myeloid neoplasms. Clin Cancer Res 16:3825–3831PubMedCrossRefGoogle Scholar
  31. Oh ST, Simonds EF, Jones C, Hale MB, Goltsev Y, Gibbs KD Jr, Merker JD, Zehnder JL, Nolan GP, Gotlib J (2010) Novel mutations in the inhibitory adaptor protein LNK drive JAK-STAT signaling in patients with myeloproliferative neoplasms. Blood 116:988–992PubMedCrossRefGoogle Scholar
  32. Oki Y, Jelinek J, Beran M, Verstovsek S, Kantarjian HM, Issa JP (2006) Mutations and promoter methylation status of NPM1 in myeloproliferative disorders. Haematologica 91:1147–1148PubMedGoogle Scholar
  33. Olcaydu D, Harutyunyan A, Jager R, Berg T, Gisslinger B, Pabinger I, Gisslinger H, Kralovics R (2009a) A common JAK2 haplotype confers susceptibility to myeloproliferative neoplasms. Nat Genet 41:450–454PubMedCrossRefGoogle Scholar
  34. Olcaydu D, Skoda RC, Looser R, Li S, Cazzola M, Pietra D, Passamonti F, Lippert E, Carillo S, Girodon F et al (2009b) The ‘GGCC’ haplotype of JAK2 confers susceptibility to JAK2 exon 12 mutation-positive polycythemia vera. Leukemia 23(10):1924–1926PubMedCrossRefGoogle Scholar
  35. Olcaydu D, Rumi E, Harutyunyan A, Passamonti F, Pietra D, Pascutto C, Berg T, Jager R, Hammond E, Cazzola M et al (2011) The role of the JAK2 GGCC haplotype and the TET2 gene in familial myeloproliferative neoplasms. Haematologica 96:367–374PubMedCrossRefGoogle Scholar
  36. Pardanani AD, Levine RL, Lasho T, Pikman Y, Mesa RA, Wadleigh M, Steensma DP, Elliott MA, Wolanskyj AP, Hogan WJ et al (2006) MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients. Blood 108:3472–3476PubMedCrossRefGoogle Scholar
  37. Pardanani A, Lasho T, Finke C, Oh ST, Gotlib J, Tefferi A (2010a) LNK mutation studies in blast-phase myeloproliferative neoplasms, and in chronic-phase disease with TET2, IDH, JAK2 or MPL mutations. Leukemia 24:1713–1718PubMedCrossRefGoogle Scholar
  38. Pardanani A, Lasho TL, Finke CM, Mai M, McClure RF, Tefferi A (2010b) IDH1 and IDH2 mutation analysis in chronic- and blast-phase myeloproliferative neoplasms. Leukemia 24:1146–1151PubMedCrossRefGoogle Scholar
  39. Pikman Y, Lee BH, Mercher T, McDowell E, Ebert BL, Gozo M, Cuker A, Wernig G, Moore S, Galinsky I et al (2006) MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med 3:e270PubMedCrossRefGoogle Scholar
  40. Sanada M, Suzuki T, Shih LY, Otsu M, Kato M, Yamazaki S, Tamura A, Honda H, Sakata-Yanagimoto M, Kumano K et al (2009) Gain-of-function of mutated C-CBL tumour suppressor in myeloid neoplasms. Nature 460:904–908PubMedCrossRefGoogle Scholar
  41. Schmidt MH, Dikic I (2005) The Cbl interactome and its functions. Nat Rev Mol Cell Biol 6:907–918PubMedCrossRefGoogle Scholar
  42. Schnittger S, Bacher U, Haferlach C, Alpermann T, Dicker F, Sundermann J, Kern W, Haferlach T (2011) Characterization of NPM1-mutated AML with a history of myelodysplastic syndromes or myeloproliferative neoplasms. Leukemia 25:615–621PubMedCrossRefGoogle Scholar
  43. Simon C, Dondi E, Chaix A, de Sepulveda P, Kubiseski TJ, Varin-Blank N, Velazquez L (2008) Lnk adaptor protein down-regulates specific Kit-induced signaling pathways in primary mast cells. Blood 112:4039–4047PubMedCrossRefGoogle Scholar
  44. Stegelmann F, Bullinger L, Griesshammer M, Holzmann K, Habdank M, Kuhn S, Maile C, Schauer S, Dohner H, Dohner K (2010) High-resolution single-nucleotide polymorphism array-profiling in myeloproliferative neoplasms identifies novel genomic aberrations. Haematologica 95:666–669PubMedCrossRefGoogle Scholar
  45. Stegelmann F, Bullinger L, Schlenk RF, Paschka P, Griesshammer M, Blersch C, Kuhn S, Schauer S, Dohner H, Dohner K (2011) DNMT3A mutations in myeloproliferative neoplasms. Leukemia 25(7):1217–1219PubMedCrossRefGoogle Scholar
  46. Taketani T, Taki T, Takita J, Ono R, Horikoshi Y, Kaneko Y, Sako M, Hanada R, Hongo T, Hayashi Y (2002) Mutation of the AML1/RUNX1 gene in a transient myeloproliferative disorder patient with Down syndrome. Leukemia 16:1866–1867PubMedCrossRefGoogle Scholar
  47. Tefferi A (2010) Novel mutations and their functional and clinical relevance in myeloproliferative neoplasms: JAK2, MPL, TET2, ASXL1, CBL, IDH and IKZF1. Leukemia 24:1128–1138PubMedCrossRefGoogle Scholar
  48. Tefferi A, Lim KH, Abdel-Wahab O, Lasho TL, Patel J, Patnaik MM, Hanson CA, Pardanani A, Gilliland DG, Levine RL (2009a) Detection of mutant TET2 in myeloid malignancies other than myeloproliferative neoplasms: CMML, MDS, MDS/MPN and AML. Leukemia 23:1343–1345PubMedCrossRefGoogle Scholar
  49. Tefferi A, Pardanani A, Lim KH, Abdel-Wahab O, Lasho TL, Patel J, Gangat N, Finke CM, Schwager S, Mullally A et al (2009b) TET2 mutations and their clinical correlates in polycythemia vera, essential thrombocythemia and myelofibrosis. Leukemia 23(5):905–911PubMedCrossRefGoogle Scholar
  50. Teofili L, Martini M, Cenci T, Guidi F, Torti L, Giona F, Foa R, Leone G, Larocca LM (2008) Epigenetic alteration of SOCS family members is a possible pathogenetic mechanism in JAK2 wild type myeloproliferative diseases. Int J Cancer 123:1586–1592PubMedCrossRefGoogle Scholar
  51. Thoennissen NH, Krug UO, Lee DH, Kawamata N, Iwanski GB, Lasho T, Weiss T, Nowak D, Koren-Michowitz M, Kato M et al (2010) Prevalence and prognostic impact of allelic imbalances associated with leukemic transformation of Philadelphia chromosome-negative myeloproliferative neoplasms. Blood 115:2882–2890PubMedCrossRefGoogle Scholar
  52. Tong W, Lodish HF (2004) Lnk inhibits Tpo-mpl signaling and Tpo-mediated megakaryocytopoiesis. J Exp Med 200:569–580PubMedCrossRefGoogle Scholar
  53. Tong W, Zhang J, Lodish HF (2005) Lnk inhibits erythropoiesis and Epo-dependent JAK2 activation and downstream signaling pathways. Blood 105:4604–4612PubMedCrossRefGoogle Scholar
  54. Vannucchi AM, Antonioli E, Guglielmelli P, Rambaldi A, Barosi G, Marchioli R, Marfisi RM, Finazzi G, Guerini V, Fabris F et al (2007) Clinical profile of homozygous JAK2 617V>F mutation in patients with polycythemia vera or essential thrombocythemia. Blood 110:840–846PubMedCrossRefGoogle Scholar
  55. Veerakumarasivam A, Scott HE, Chin SF, Warren A, Wallard MJ, Grimmer D, Ichimura K, Caldas C, Collins VP, Neal DE et al (2008) High-resolution array-based comparative genomic hybridization of bladder cancers identifies mouse double minute 4 (MDM4) as an amplification target exclusive of MDM2 and TP53. Clin Cancer Res 14:2527–2534PubMedCrossRefGoogle Scholar
  56. Velazquez L, Cheng AM, Fleming HE, Furlonger C, Vesely S, Bernstein A, Paige CJ, Pawson T (2002) Cytokine signaling and hematopoietic homeostasis are disrupted in Lnk-deficient mice. J Exp Med 195:1599–1611PubMedCrossRefGoogle Scholar
  57. Wattel E, Preudhomme C, Hecquet B, Vanrumbeke M, Quesnel B, Dervite I, Morel P, Fenaux P (1994) p53 mutations are associated with resistance to chemotherapy and short survival in hematologic malignancies. Blood 84:3148–3157PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Center for Molecular Medicine (CeMM) of the Austrian Academy of SciencesViennaAustria
  2. 2.Division of Hematology and Blood Coagulation, Department of Internal Medicine IMedical University of ViennaViennaAustria

Personalised recommendations