Advertisement

VCSELs pp 291-317 | Cite as

High-Contrast Grating VCSELs

  • Connie J. Chang-Hasnain
Chapter
Part of the Springer Series in Optical Sciences book series (SSOS, volume 166)

Abstract

We review a recent invention of single-layer one-dimensional high-index-contrast subwavelength grating (HCG) and its incorporation into a VCSEL structure. The HCG is approximately 50 times thinner than a conventional distributed Bragg reflector (DBR), but offers higher reflectivity with a much broader spectral width. It provides lithographically defined control of polarization, transverse mode and emission wavelength. Using this ultrathin reflector, the tunable mirror in a micro-mechanical HCG-VCSELs are fabricated with a \(10^{4}\) times volume reduction and more than two orders of magnitude improved tuning speed.

Keywords

Wavelength Division Multiplex Transverse Electric Distribute Bragg Reflector Rigorous Couple Wave Analysis Grating Spacing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The author wishes to acknowledge major contributions from former and current graduate students at UC Berkeley, C. Mateus, M. Huang, Y. Zhou, C. Chase, V. Karagodsky and Y. Rao; and fruitful collaborations with Profs. Fumio Koyama and Markus Amann. She also thanks the support of a National Security Science and Engineering Faculty Fellowship and National Science Foundation through CIAN NSF ERC under grant #EEC-0812072.

References

  1. 1.
    K. Iga, Surface-emitting laser—its birth and generation of new optoelectronics field. IEEE J. Select. Topics Quantum Electron. 6, 1201–1215 (2000)CrossRefGoogle Scholar
  2. 2.
    F. Koyama, H. Uenohara, T. Sakaguchi, K. Iga, GaAlAs/GaAs MOCVD growth for surface emitting laser. Jpn. J. Appl. Phys. Part 1 26, 1077–1081 (1987)CrossRefGoogle Scholar
  3. 3.
    J.L. Jewell, S.L. McCall, Y.H. Lee, A. Scherer, A.C. Gossard, J.H. English, Lasing characteristics of GaAs microresonators. Appl. Phys. Lett. 54,1400 (1989)Google Scholar
  4. 4.
    L.A. Coldren, R.S. Geels, S.W. Corzine, J.W. Scott, Efficient vertical-cavity lasers. Opt. Quantum Electron. 24, 105–119 (1992)Google Scholar
  5. 5.
    M. Orenstein, A. Von Lehmen, C.J. Chang-Hasnain, N.G. Stoffel, L.T. Florez, J.P. Harbison, J. Wullert, A. Scherer, Matrix addressable vertical cavity surface emitting laser array. Electron. Lett. 27(5), 437–438 (1991)ADSCrossRefGoogle Scholar
  6. 6.
    C.J. Chang-Hasnain, J.P. Harbison, C.E. Zah, M.W. Maeda, L.T. Florez, N.G. Stoffel, T.P. Lee, Multiple wavelength tunable surface emitting laser arrays. IEEE J. Quantum Electron. 27(6), 1368–1376 (1991)ADSCrossRefGoogle Scholar
  7. 7.
    C.J. Chang-Hasnain, J.P. Harbison, G. Hasnain, A. Von Lehmen, L.T. Florez, N.G. Stoffel, Dynamic, polarization, and transverse mode characteristics of vertical cavity surface emitting lasers. IEEE J. Quantum Electron. 27(6), 1402–1409 (1991)ADSCrossRefGoogle Scholar
  8. 8.
    M.W. Maeda, C.J. Chang-Hasnain, J.S. Patel, C. Lin, H.A. Johnson, J.A. Walker, Use of a multi-wavelength surface-emitting laser array in a 4-channel wavelength-division-multiplexed system experiment. IEEE Photon. Technol. Lett. 3(3), 268–269 (1991)ADSCrossRefGoogle Scholar
  9. 9.
    K.H. Hahn, M.R. Tan, S.Y. Wang, Intensity noise of large area vertical cavity surface emitting lasers in multimode optical fibre links. Electron. Lett. 30(2), 139–140 (1994)CrossRefGoogle Scholar
  10. 10.
    C.F.R. Mateus, M.C.Y. Huang, Y. Deng, A.R. Neureuther, C.J. Chang-Hasnain, Ultrabroadband mirror using low-index cladded subwavelength grating. IEEE Photon. Technol. Lett. 16(2), 518–520 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    C.F.R. Mateus, M.C.Y. Huang, L. Chen, C.J. Chang-Hasnain, Y. Suzuki, Broadband mirror (1.12–1.62 \(\upmu {\rm m}\)) using single-layer sub-wavelength grating. IEEE Photon. Technol. Lett. 16(7), 1676–1678 (2004)Google Scholar
  12. 12.
    C.J. Chang-Hasnain, C.F.R. Mateus, M.C.Y. Huang, Ultra broadband mirror using subwavelength grating, US Patent 7,304,781Google Scholar
  13. 13.
    M.C.Y. Huang, Y. Zhou, C.J. Chang-Hasnain, A surface-emitting laser incorporating a high-index-contrast subwavelength grating. Nat. Photon. 1, 119–122 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    C. Chang-Hasnain, Y. Zhou, M. Huang, C. Chase, High-contrast grating VCSELs. IEEE J. Select. Topics Quantum Electron. 15, 869–878 (2009)CrossRefGoogle Scholar
  15. 15.
    C. Chase, Y. Zhou, C. Chang-Hasnain, Size effect of high contrast gratings in VCSELs. Opt. Express 17, 24002–24007 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    C. Chase, Y. Rao, W. Hofmann, C.J. Chang-Hasnain, 1550 nm high contrast grating VCSEL. Opt. Express 18(15), 15461–15466 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    V. Karagodsky, B. Pesala, C. Chase, W. Hofmann, F. Koyama, C.J. Chang-Hasnain, Monolithically integrated multi-wavelength VCSEL arrays using high-contrast gratings. Opt. Express 18(2), 694–699 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    F. Lu, F.G. Sedgwick, V. Karagodsky, C. Chase, C.J. Chang-Hasnain, Planar high-numerical-aperture low-loss focusing reflectors and lenses using subwavelength high contrast gratings. Opt. Express 18(12), 12606–12614 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    D. Fattal, J. Li, Z. Peng, M. Fiorentino, R.G. Beausoleil, Flat dielectric grating reflectors with focusing abilities. Nat. Photon. 4, 466–470 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    M.C.Y. Huang, Y. Zhou, C.J. Chang-Hasnain, A nanoelectromechanical tunable laser. Nat. Photon. 2, 180–184 (2008)Google Scholar
  21. 21.
    P. Gilet, N. Olivier, P. Grosse, K. Gilbert, A. Chelnokov, I.-S. Chung, J. Mørk, High-index-contrast subwavelength grating, in Vertical-Cavity Surface-Emitting Lasers XIV, Proceedings of SPIE, vol. 7615 (2010), p. 76150-1Google Scholar
  22. 22.
    S. Boutami, B. Ben Bakir, J.-L. Leclercq, P. Viktorovitch, Compact and polarization controlled \(1.55\,\upmu\hbox{m}\) vertical-cavity surface emitting laser using single-layer photonic crystal mirror. Appl. Phys. Lett. 91(7), 071105-1–071105-3 (2007)Google Scholar
  23. 23.
    S. Boutami, B. Benbakir, X. Letartre, J.L. Leclercq, P. Regreny, P. Viktorovitch, Ultimate vertical Fabry-Perot cavity based on single-layer photonic crystal mirrors. Opt. Express 15(19), 12443–12449 (2007)ADSCrossRefGoogle Scholar
  24. 24.
    I.-S. Chung, J. Mørk, P. Gilet, A. Chelnokov, Subwavelength grating-mirror VCSEL with a thin oxide gap. IEEE Photon. Technol. Lett. 20(2), 105–107 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    A. Haglund, S.J. Gustavsson, J. Vukusic, P. Jedrasik, A. Larsson, High-power fundamental-mode and polarisation stabilised VCSELs using sub-wavelength surface grating. Electron Lett. 41, 805–807 (2005)CrossRefGoogle Scholar
  26. 26.
    S. Goeman, S. Boons, B. Dhoedt, K. Vandeputte, K. Caekebeke, P.V. Daele, R. Baets, First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-gratings) for long-wavelength VCSELs. IEEE Photon. Technol. Lett. 10, 1205–1207 (1998)ADSCrossRefGoogle Scholar
  27. 27.
    L. Zhuang, S. Schablitsky, R.C. Shi, S.Y. Chou, Fabrication and performance of thin amorphous Si subwavelength transmission grating for controlling vertical cavity surface emitting laser polarization. J. Vac. Sci. Technol. B 14, 4055–4057 (1996)CrossRefGoogle Scholar
  28. 28.
    M.G. Moharam, T.K. Gaylord, Rigorous coupled-wave analysis of planar-grating diffraction. J. Opt. Soc. Am. 71, 811–818 (1981)ADSCrossRefGoogle Scholar
  29. 29.
    V. Karagodsky, F. Sedgwick, C.J. Chang-Hasnain, Theoretical analysis of subwavelength high contrast grating reflectors. Opt. Express 18(16), 16973–16988 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    V. Karagodsky, C. Chase, C.J. Chang-Hasnain, Matrix Fabry–Perot resonance mechanism in high-contrast gratings. Opt. Lett. 36(9), 1704–1706 (2011)Google Scholar
  31. 31.
    V. Karagodsky, F.G. Sedwick, C.J. Chang-Hasnain, New physics of subwavelength high contrast gratings. in Proceedings of Conf. on Lasers and Electro-Optics, CLEO ’11. Baltimore, MD, May 2011, paper QThD2Google Scholar
  32. 32.
    Y. Zhou, M.C.Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F.G. Sedgwick, C.J. Chang-Hasnain, High-index-contrast grating (HCG) and its applications in optoelectronic devices. IEEE J. Select. Topics Quantum Electron. 15(5), 1485–1499 (2009)CrossRefGoogle Scholar
  33. 33.
    C.J. Chang-Hasnain, VCSEL for metro communications, Chap. 13 in Optical Fiber Communications IV A: Components, ed. by I. Kaminow, T. Li (Academic Press, New York, 2002), pp. 666–698Google Scholar
  34. 34.
    A. Mizutani, N. Hatori, N. Nishiyama, F. Koyama, K. Iga, InGaAs/GaAs vertical-cavity surface emitting laser on GaAs (311)B substrate using carbon auto-doping. Jpn. J. Appl. Phys. 37, 1408–1412 (1998)ADSCrossRefGoogle Scholar
  35. 35.
    S.J. Schablitsky, Z. Lei, R.C. Shi, S.Y. Chou, Controlling polarization of vertical-cavity surface-emitting lasers using amorphous silicon subwavelength transmission gratings. Appl. Phys. Lett. 69, 7–9 (1996)ADSCrossRefGoogle Scholar
  36. 36.
    J.M. Ostermann, P. Debernardi, R. Michalzik, Optimized integrated surface grating design for polarization-stable VCSELs. IEEE J. Quantum Electron. 42, 690–698 (2006)ADSCrossRefGoogle Scholar
  37. 37.
    A. Haglund, J.S. Gustavsson, J. Bengtsson, P. Jedrasik, A. Larsson, Design and evaluation of fundamental-mode and polarization-stabilized VCSELs with a subwavelength surface grating. IEEE J. Quantum Electron. 42, 231–240 (2006)ADSCrossRefGoogle Scholar
  38. 38.
    R. Michalzik, J.M. Ostermann, P. Debernardi, Polarization-stable monolithic VCSELs, in Vertical-Cavity Surface-Emitting Lasers XII, ed. by C. Lei, J.K. Guenter, Proceedings of SPIE, vol. 6908 (2008), pp. 69080A-1–69080A-16Google Scholar
  39. 39.
    K.D. Choquette, K.M. Geib, C.I.H. Ashby, R.D. Twesten, O. Blum, H.Q. Hou, D.M. Follstaedt, B.E. Hammons, D. Mathes, R. Hull, Advances in selective wet oxidation of AlGaAs alloys. IEEE J. Select. Topics Quantum Electron. 3, 916–926 (1997)CrossRefGoogle Scholar
  40. 40.
    Y.A. Wu, G.S. Li, W. Yuen, C.J. Chang-Hasnain, C. Caneau, High-yield processing and single-mode operation of passive antiguide region vertical-cavity lasers. IEEE J. Select. Topics Quantum Electron. 3, 429–434 (1997)CrossRefGoogle Scholar
  41. 41.
    A.J. Danner, J.J. Raftery Jr., N. Yokouchi, K.D. Choquette, Transverse modes of photonic crystal vertical-cavity lasers. Appl. Phys. Lett. 84, 1031 (2004)ADSCrossRefGoogle Scholar
  42. 42.
    M.C.Y. Huang, Y. Zhou, C.J. Chang-Hasnain, Single mode high-contrast subwavelength grating vertical cavity surface emitting lasers. Appl. Phys. Lett. 92, 171108 (2008)ADSCrossRefGoogle Scholar
  43. 43.
    Y. Zhou, M.C.Y. Huang, C.J. Chang-Hasnain, Large fabrication tolerance for VCSELs using high-contrast grating. IEEE Photon. Technol. Lett. 20, 434–436 (2008)ADSCrossRefGoogle Scholar
  44. 44.
    C. Chang-Hasnain, M. Maeda, N. Stoffel, J. Harbison, L. Florez, J. Jewell, Surface emitting laser arrays with uniformly separated wavelengths. Electron. Lett. 26, 940–941 (1990)CrossRefGoogle Scholar
  45. 45.
    L. Eng, K. Bacher, W. Yuen, J. Harris Jr., C. Chang-Hasnain, Multiple wavelength vertical cavity laser arrays on patterned substrates. IEEE J. Quantum Electron. 1, 624–628 (1995)CrossRefGoogle Scholar
  46. 46.
    F. Koyama, T. Mukaihara, Y. Hayashi, N. Ohnoki, N. Hatori, K. Iga, Wavelength control of vertical cavity surface-emitting lasers by using nonplanar MOCVD. IEEE Photon. Technol. Lett. 7, 10–12 (1995)ADSCrossRefGoogle Scholar
  47. 47.
    T. Wipiejewski, M. Peters, E. Hegblom, L. Coldren, Vertical-cavity surface-emitting laser diodes with post-growth wavelength adjustment. IEEE Photon. Technol. Lett. 7, 727–729 (1995)ADSCrossRefGoogle Scholar
  48. 48.
    W. Hofmann, E. Wong, G. Böhm, M. Ortsiefer, N.H. Zhu, M.C. Amann, \(1.55\,\upmu\hbox{m}\) VCSEL arrays for high-bandwidth WDM-PONs. IEEE Photon. Technol. Lett. 20, 291–293 (2008)Google Scholar
  49. 49.
    M.S. Wu, E.C. Vail, G.S. Li, W. Yuen, C.J. Chang-Hasnain, Widely and continuously tunable micromachined resonant cavity detector with wavelength tracking. IEEE Photon. Technol. Lett. 8(1), 98–100 (1996)ADSCrossRefGoogle Scholar
  50. 50.
    C.J. Chang-Hasnain, Tunable VCSEL. IEEE J. Select. Topics Quantum Electron. 6, 978–987 (2000)CrossRefGoogle Scholar
  51. 51.
    S. Decai, W. Fan, P. Kner, J. Boucart, T. Kageyama, Z. Dongxu, R. Pathak, R.F. Nabiev, W. Yuen, Long wavelength-tunable VCSELs with optimized MEMS bridge tuning structure. IEEE Photon. Technol. Lett. 16, 714–716 (2004)ADSCrossRefGoogle Scholar
  52. 52.
    F. Riemenschneider, M. Maute, H. Halbritter, G. Boehm, M.C. Amann, P. Meissner, Continuously tunable long-wavelength MEMS-VCSEL with over 40 nm tuning range. IEEE Photon. Technol. Lett. 16, 2212–2214 (2004)ADSCrossRefGoogle Scholar
  53. 53.
    M.C.Y. Huang, K.B. Cheng, Y. Zhou, B. Pesala, C.J. Chang-Hasnain, A.P. Pisano, Demonstration of piezoelectric actuated GaAs-based MEMS tunable VCSEL. IEEE Photon. Technol. Lett. 18, 1197–1199 (2006)ADSCrossRefGoogle Scholar
  54. 54.
    B. Kögel, H. Halbritter, S. Jatta, M. Maute, G. Böhm, M.-C. Amann, M. Lackner, M. Schwarzott, F. Winter, P. Meissner, Simultaneous spectroscopy of \(\hbox{NH}_{3} \) and CO using a \(>50\,\hbox{nm}\) continuously tunable MEMS-VCSEL. IEEE Sens. J. 7(11), 1483–1489 (2007)Google Scholar
  55. 55.
    H. Halbritter, C. Sydlo, B. Kögel, F. Riemenschneider, H.L. Hartnagel, P. Meissner, Impact of micromechanics on the linewidth and chirp performance of MEMS-VCSELs. IEEE J. Select. Topics Quantum Electron. 13(2), 367–373 (2007)CrossRefGoogle Scholar
  56. 56.
    S. Jatta, B. Kögel, M. Maute, K. Zogal, F. Riemenschneider, G. Böhm, M.-C. Amann, P. Meißner, Bulk-micromachined VCSEL at \(1.55\,\upmu\hbox{m}\) with 76 nm single-mode continuous tuning range. IEEE Photon. Technol. Lett. 21(24), 1822–1824 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Electrical Engineering and Computer ScienceUniversity of CaliforniaBerkeleyUSA

Personalised recommendations