Skip to main content

Design and Performance of High-Speed VCSELs

  • Chapter
  • First Online:
VCSELs

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 166))

Abstract

Over the past several years, high-speed vertical-cavity surface-emitting lasers (VCSELs) have been the subject of intensive worldwide research due to their applications in optical interconnects and optical data networks. The performance of VCSELs, especially with respect to their high-speed characteristics, has made significant progress. In this chapter, we first present the basic theory for current-modulated VCSELs using rate equations and small-signal analysis. Factors that affect the modulation bandwidth, including the intrinsic laser responses and extrinsic parasitics, are identified. Once these limitations are known, we discuss various designs that have been implemented in VCSELs to specifically address them, followed by a review of the current high-speed VCSEL performance based on these designs at several different wavelengths, including 850 nm, 980 nm, \(1.1\;\upmu\hbox{m},\) and \(1.3\mbox{--}1.6\;\upmu\hbox{m}.\) Finally, we consider new modulation schemes based on loss modulation in coupled-cavity VCSELs, which has the potential to reach even higher speeds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D.A.B. Miller, Physical reasons for optical interconnection. Int. J. Optoelectronics 11, 155 (1997)

    Google Scholar 

  2. D.M. Kuchta, P. Pepeljugoski, Y. Kwark, VCSEL modulation at 20Gb/s over 200m of multimode fiber using a 3.3v SiGe laser driver IC, in Technical Digest LEOS Summer Topical Meeting, Copper Mountain, CO (2001), p. 49

    Google Scholar 

  3. N. Suzuki, H. Hatakeyama, K. Fukatsu, T. Anan, K. Yashiki, M. Tsuji, 25-Gbps operation of \(1.1\mbox{-}\upmu\hbox{m}\)-range InGaAs VCSELs for high-speed optical interconnections, in Proceedings of Optical Fiber Communication Conference, OFC 2006, Anaheim, CA (2006)

    Google Scholar 

  4. K. Yashiki, N. Suzuki, K. Fukatsu, T. Anan, H. Hatakeyama, M. Tsuji, \(1.1\mbox{-}\upmu\hbox{m}\)-range tunnel junction VCSELs with 27-GHz relaxation oscillation frequency, in Proceedings of Optical Fiber Communication Conference, OFC 2007, Anaheim, CA (2007)

    Google Scholar 

  5. Y.-C. Chang, C.S Wang, L.A Coldren, High-efficiency, high-speed VCSELs with 35 Gbit/s error-free operation. Electron. Lett. 43(19), 1022 (2007)

    Article  Google Scholar 

  6. T. Anan, N. Suzuki, K. Yashiki, K. Fukatsu, H. Hatakeyama, T. Akagawa, K. Tokutome, M. Tsuji, High-speed InGaAs VCSELs for optical interconnects. in Proceedings of International Symposium on VCSELs and Integrated Photonics, paper E3, Tokyo, Japan (2007)

    Google Scholar 

  7. B.E. Lemoff, M.E. Ali, G. Panotopoulos, E. de Groot, G.M. Flower, G.H. Rankin, A.J. Schmit, K.D. Djordjev, M.R.T. Tan, A. Tandon, W. Gong, R.P. Tella, B. Law, D.W. Dolfi, Parallel-WDM for multi-Tb/s optical interconnects, in Proceedings of IEEE Lasers and Electro-Optical Society Annual Meeting, LEOS 2005, Sydney (2005), p. 359

    Google Scholar 

  8. C.L. Schow, F.E. Doany, O. Liboiron-Ladouceur, C. Baks, D.M. Kuchta, L. Schares, R. John, J.A. Kash, 160-Gb/s, 16-channel full-duplex, single-chip CMOS optical transceiver, in Proceedings of Optical Fiber Communication Conference, OFC 2007, Anaheim, CA (2007)

    Google Scholar 

  9. J. Cheng, C.-L. Shieh, X. Huang, G. Liu, M. Murty, C.C. Lin, D.X. Xu, Efficient CW lasing and high-speed modulation of \(1.3\mbox{-}\upmu\hbox{m}\) AlGaInAs VCSELs with good high temperature lasing performance. IEEE Photon. Technol. Lett. 17(1), 7 (2005)

    Google Scholar 

  10. N. Nishiyama, C. Caneau, J.D. Downie, M. Sauer, C.-E. Zah, 10-Gbps 1.3 and 1.55-\(\upmu\)m InP-based VCSELs: \(85^\circ\hbox{C}\) 10-km error-free transmission and room temperature 40-km transmission at 1.55-\(\upmu\)m with EDC, in Proceedings of Optical Fiber Communication Conference, OFC 2006, Anaheim, CA (2006)

    Google Scholar 

  11. J. Jewell, L. Graham, M. Crom, K. Maranowski, J. Smith, T. Fanning, 1310 nm VCSELs in 1–10 Gb/s commercial applications, in Vertical-Cavity Surface-Emitting Lasers X, ed. by C. Lei, K.D. Choquette, Proceedings of SPIE, vol. 6132 (2007), p. 613204-1

    Google Scholar 

  12. W. Hofmann, N.H. Zhu, M. Ortsiefer, G. Böhm, Y. Liu, M.-C. Amann, High speed \((>\!11\hbox{GHz})\) modulation of BCB-passivated \(1.55\upmu\hbox{m}\) InGaAlAs-InP VCSELs. Electron. Lett. 42(17), 976 (2006)

    Google Scholar 

  13. E. Söderberg, J.S. Gustavsson, P. Modh, A. Larsson, Z. Zhang, J. Berggren, M. Hammar, High-temperature dynamics, high-speed modulation, and transmission experiments using \(1.3\mbox{-}\upmu\hbox{m}\) InGaAs single-mode VCSELs. J. Lightwave Technol. 25(9), 2791 (2007)

    Google Scholar 

  14. R.S. Tucker, High-speed modulation of semiconductor lasers. J. Lightwave Technol. 3(6), 1180 (1985)

    Article  ADS  Google Scholar 

  15. L.A. Coldren, S.W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, New York, 1995)

    Google Scholar 

  16. D. Tauber, G. Wang, R.S. Geels, J.E. Bowers, L.A. Coldren, Large and small signal dynamics of vertical cavity surface emitting lasers. Appl. Phys. Lett. 62(4), 325 (1993)

    Article  ADS  Google Scholar 

  17. T.R. Chen, B. Zhao, L. Eng, Y.H. Zhuang, J. O’Brien, A. Yariv, Very high modulation efficiency of ultralow threshold current single quantum well InGaAs lasers. Electron. Lett. 29(17), 1525 (1993)

    Article  Google Scholar 

  18. R. Nagarajan, T. Fukushima, S.W. Corzine, J.E. Bowers, Effects of carrier transport on high-speed quantum well lasers. Appl. Phys. Lett. 59(15), 1835 (1991)

    Article  ADS  Google Scholar 

  19. Y. Liu, W.-C. Ng, B. Klein, K. Hess, Effects of the spatial nonuniformity of optical transverse modes on the modulation response of vertical-cavity surface-emitting lasers. IEEE J. Quantum Electron. 39(1), 99 (2003)

    Article  ADS  Google Scholar 

  20. J.W. Scott, R.S. Geels, S.W. Corzine, L.A. Coldren, Modeling temperature effects and spatial hole burning to optimize vertical-cavity surface-emitting laser performance. IEEE J. Quantum Electron. 29(5), 1295 (1993)

    Article  ADS  Google Scholar 

  21. S.F. Yu, W.N. Wong, P. Shum, E.H. Li, Theoretical analysis of modulation response and second-order harmonic distortion in vertical-cavity surface-emitting lasers. IEEE J. Quantum Electron. 32(12), 2139 (1996)

    Article  ADS  Google Scholar 

  22. M. Willatzen, T. Takahashi, Y. Arakawa, Nonlinear gain effects due to carrier heating and spectral hole burning in strained-quantum-well lasers. IEEE Photon. Technol. Lett. 4(7), 682 (1992)

    Article  ADS  Google Scholar 

  23. Y. Liu, W.-C. Ng, F. Oyafuso, B. Klein, K. Hess, Simulating the modulation response of VCSELs: the effects of diffusion capacitance and spatial hole-burning. IEE Proc. Optoelectron. 149(4), 182 (2002)

    Article  Google Scholar 

  24. J. Strologas, K. Hess, Diffusion capacitance and laser diodes. IEEE Trans. Electron Devices 51(3), 506 (2004)

    Article  ADS  Google Scholar 

  25. K.Y. Lau, A. Yariv, Ultra-high speed semiconductor lasers. IEEE J. Quantum Electron. 21(2), 121 (1985)

    Article  ADS  Google Scholar 

  26. Y. Arakawa, A. Yariv, Quantum well lasers—gain, spectra, dynamics. IEEE J. Quantum Electron. 22(9), 1887 (1986)

    Article  ADS  Google Scholar 

  27. J.D. Ralston, S. Weisser, I. Esquivias, E.C. Larkins, J. Rosenzweig, P.J. Tasker, J. Fleissner, Control of differential gain, nonlinear gain, and damping factor for high-speed application of GaAs-based MQW lasers. IEEE J. Quantum Electron. 29(6), 1648 (1993)

    Article  ADS  Google Scholar 

  28. A. Schönfelder, S. Weisser, I. Esquivias, J.D. Ralston, J. Rosenzweig, Theoretical investigation of gain enhancements in strained \(\hbox{In}_{0.35}\hbox{Ga}_{0.65}\hbox{As}/\hbox{GaAs} \; \hbox{MQW}\) lasers via p-doping. IEEE Photon. Technol. Lett. 6(4), 475 (1994)

    Google Scholar 

  29. B. Zhao, T.R. Chen, A. Yariv, The extra differential gain enhancement in multiple-quantum-well lasers. IEEE Photon. Technol. Lett. 4(2), 124 (1992)

    Article  ADS  Google Scholar 

  30. K.L. Lear, R.P. Schneider Jr., K.D. Choquette, S.P. Kilcoyne, Index guiding dependent effects in implant and oxide confined vertical-cavity lasers. IEEE Photon. Technol. Lett. 8(6), 740 (1996)

    Google Scholar 

  31. Y. Satuby, M. Orenstein, Limits of the modulation response of a single-mode proton implanted VCSEL. IEEE Photon. Technol. Lett. 10(6), 760 (1998)

    Article  ADS  Google Scholar 

  32. A.N. AL-Omari, K.L. Lear, Polyimide-planarized vertical-cavity surface-emitting lasers with 17.0-GHz bandwidth. IEEE Photon. Technol. Lett. 16(4), 969 (2004)

    Article  ADS  Google Scholar 

  33. K.L. Lear, A. Mar, K.D. Choquette, S.P. Kilcoyne, R.P. Schneider Jr., K.M. Geib, High-frequency modulation of oxide-confined vertical cavity surface emitting lasers. Electron. Lett. 32(5), 457 (1996)

    Google Scholar 

  34. P. Westbergh, J.S. Gustavsson, Å. Haglund, H. Sunnerud, A. Larsson, Large aperture 850 nm VCSELs operating at bit rates up to 25 Gbit/s. Electron. Lett. 4(15), 907 (2008)

    Article  Google Scholar 

  35. B.J. Thibeault, K. Bertilsson, E.R. Hegblom, E. Strzelecka, P.D. Floyd, R. Naone, L.A. Coldren, High-speed characteristics of low-optical loss oxide-apertured vertical-cavity lasers. IEEE Photon. Technol. Lett. 9(1), 11 (1997)

    Article  ADS  Google Scholar 

  36. Y.-C. Chang, C.S. Wang, L.A. Johansson, L.A. Coldren, High-efficiency, high-speed VCSELs with deep oxidation layers. Electron. Lett. 42(22), 1281 (2006)

    Article  Google Scholar 

  37. R.H. Johnson, D.M. Kuchta, 30 Gb/s directly modulated 850 nm datacom VCSELs, in Conference on Lasers and Electro-Optics, CLEO 2008, San Jose, CA (2008)

    Google Scholar 

  38. E.R. Hegblom, D.I. Babic, B.J. Thibeault, L.A. Coldren, Scattering losses from dielectric apertures in vertical-cavity lasers. IEEE J. Select. Topics Quantum Electron. 3(2), 379 (1997)

    Article  Google Scholar 

  39. L.A. Coldren, E.R. Hegblom, Fundamental issues in VCSEL design. Chap. 2 in Vertical-Cavity Surface-Emitting Lasers, ed. by C. Wilmsen, H. Temkin, L.A. Coldren (Cambridge University Press, Cambridge, 1999), pp. 32–67

    Google Scholar 

  40. Y.H. Chang, H.C. Kuo, F.-I. Lai, K.F. Tzeng, H.C. Yu, C.P. Sung, H.P. Yang, S.C. Wang, High speed \(({>}13\,\hbox{GHz})\) modulation of 850 nm vertical cavity surface emitting lasers (VCSELs) with tapered oxide confined layer. IEE Proc. Optoelectron. 152(3), 170 (2005)

    Google Scholar 

  41. Å. Haglund, J.S. Gustavsson, P. Modh, A. Larsson, Dynamic mode stability analysis of surface relief VCSELs under strong RF modulation. IEEE Photon. Technol. Lett. 17(8), 1602 (2005)

    Article  ADS  Google Scholar 

  42. C.C. Chen, S.J. Liaw, Y.J. Yang, Stable single-mode operation of an 850-nm VCSEL with a higher order mode absorber formed by shallow Zn diffusion. IEEE Photon. Technol. Lett. 13(4), 266 (2001)

    Google Scholar 

  43. J.-W. Shi, C.-C. Chen, Y.-S. Wu, S.-H. Guol, C. Kuo, Y.-J. Yang, High-power and high-speed Zn-diffusion single fundamental-mode vertical-cavity surface-emitting lasers at 850-nm wavelength. IEEE Photon. Technol. Lett. 20(13), 1121 (2008)

    Article  ADS  Google Scholar 

  44. A. Syrbu, A. Mereuta, V. Iakovlev, A. Caliman, P. Royo, E. Kapon, 10 Gbps VCSELs with high single mode output in 1310 nm and 1550 nm wavelength bands, in Proceedings of Optical Fiber Communication Conference, OFC 2008, San Diego, CA (2008)

    Google Scholar 

  45. K.L. Lear, A.N. Al-Omari, Progress and issues for high-speed vertical cavity surface emitting lasers, in Vertical-Cavity Surface-Emitting Lasers XI, ed. by K.D. Choquette, J.K. Guenter, Proceedings of SPIE, vol. 6484 (2007), p. 64840J-1

    Google Scholar 

  46. Y.-C. Chang, L.A. Coldren, Efficient, high-data-rate, tapered oxide-aperture vertical-cavity surface-emitting lasers. IEEE J. Select. Topics Quantum Electron. 15(3), 704 (2009)

    Article  Google Scholar 

  47. C.-K. Lin, A. Tandon, K. Djordjev, S.W. Corzine, M.R.T. Tan, High-speed 985 nm bottom-emitting VCSEL arrays for chip-to-chip parallel optical interconnects. IEEE J. Select. Topics Quantum Electron. 13(5), 1332 (2007)

    Article  Google Scholar 

  48. M.G. Peters, B.J. Thibeault, D.B. Young, J.W. Scott, F.H. Peters, A.C. Gossard, L.A. Coldren, Band-gap engineered digital alloy interfaces for lower resistance vertical-cavity surface-emitting lasers. Appl. Phys. Lett. 63(25), 3411 (1993)

    Article  ADS  Google Scholar 

  49. K.L. Lear, R.P Schneider Jr., Uniparabolic mirror grading for vertical cavity surface emitting lasers. Appl. Phys. Lett. 68(5), 605 (1996)

    Google Scholar 

  50. K.L. Lear, V.M. Hietala, H.Q. Hou, J. Banas, B.E. Hammons, J. Zolper, S.P. Kilcoyne, Small and large signal modulation of 850 nm oxide-confined vertical-cavity surface-emitting lasers, in Conference on Lasers and Electro-Optics, CLEO’97, Baltimore, MD (1997)

    Google Scholar 

  51. M. Ortsiefer, W. Hofmann, E. R\(\ddot{\rm o}\)nneberg, A. Boletti, A. Gatto, P. Boffi, J. Rosskopf, R. Shau, C. Neumeyr, G. Böhm, M. Martinelli, M.-C. Amann, High speed \(1.3\upmu\hbox{m}\) VCSELs for 12.5 Gbit/s optical interconnects. Electron. Lett. 44(16), 974 (2008)

    Google Scholar 

  52. D.L. Mathine, H. Nejad, D.R. Allee, R. Droopad, G.N. Maracas, Reduction of the thermal impedance of vertical-cavtiy surface-emitting lasers after integration with copper substrates. Appl. Phys. Lett. 69(4), 463 (1996)

    Article  ADS  Google Scholar 

  53. T. Wipiejewski, D.B. Young, M.G. Perers, B.J. Thibeault, L.A. Coldren, Improved performance of vertical-cavity surface-emitting laser diodes with Au-plated heat spreading layer. Electron. Lett. 31(4), 279 (1995)

    Article  Google Scholar 

  54. A.N. AL-Omari, G.P Carey, S. Hallstein, J.P. Watson, G. Dang, K.L. Lear, Low thermal resistance high-speed top-emitting 980-nm VCSELs. IEEE Photon. Technol. Lett. 18(11), 1225 (2006)

    Article  ADS  Google Scholar 

  55. Y.-C. Chang, L.A. Coldren, Optimization of VCSEL structure for high-speed operation, in Proceedings of IEEE International Semiconductor Laser Conference, ISLC 2008, Sorrento, Italy (2008), p. 159

    Google Scholar 

  56. D.B. Young, J.W. Scott, F.H. Peters, M.G. Peters, M.L. Majewski, B.J. Thibeault, S.W. Corzine, L.A. Coldren, Enhanced performance of offset-gain high-barrier vertical-cavity surface-emitting lasers. IEEE J. Quantum Electron. 29(6), 2013 (1993)

    Article  ADS  Google Scholar 

  57. J. Ko, E.R. Hegblom, Y. Akulova, B.J. Thibeault, L.A. Coldren, Low-threshold 840-nm laterally oxidized vertical-cavity lasers using AlInGaAs-AlGaAs strained active layers. IEEE Photon. Technol. Lett. 9(7), 863 (1997)

    Article  ADS  Google Scholar 

  58. H.C. Kuo, Y.S. Chang, F.Y. Lai, T.H. Hsueh, L.H. Laih, S.C. Wang, High-speed modulation of 850 nm InGaAsP/InGaP strain-compensated VCSELs. Electron. Lett. 39(14), 1051 (2003)

    Article  Google Scholar 

  59. T. Aggerstam, R.M.V. Würtemberg, C. Runnström, E. Choumas, Large aperture 850 nm oxide-confined VCSELs for 10 Gb/s data communication, in Vertical-Cavity Surface-Emitting Lasers VI, ed. by C. Lei, S.P. Kilcoyne, Proceedings of SPIE, vol. 4649 (2002), p. 19

    Google Scholar 

  60. S.L. Yellen, A.H. Shepard, R.J. Dalby, J.A. Baumann, H.B. Serreze, T.S. Guido, R. Soltz, K.J. Bystrom, C.M. Harding, R.G. Waters, Reliability of GaAs-based semiconductor diode lasers: \(0.6\mbox{--}1.1\upmu\hbox{m}\). IEEE J. Quantum Electron. 29(6), 2058 (1993)

    Google Scholar 

  61. P. Westbergh, J.S. Gustavsson, Å. Haglund, A. Larsson, H. Hopfer, G. Fiol, D. Bimberg, A. Joel, 32 Gbit/s multimode fibre transmission using a high speed, low current density 850 nm VCSEL. Electron. Lett. 45(7), 366 (2009)

    Article  Google Scholar 

  62. S.A. Blokhin, J.A. Lott, A. Mutig, G. Fiol, N.N. Ledentsov, M.V. Maximov, A.M. Nadtochiy, V.A. Shchukin, D. Bimberg, 40 Gbit/s oxide-confined 850 nm VCSELs. Electron. Lett. 45(10), 501 (2009)

    Article  Google Scholar 

  63. F. Hopfer, A. Mutig, G. Fiol, M. Kuntz, S.S. Mikhrin, I.L. Krestnikov, D.A. Livshits, A.R. Kovsh, C. Bornholdt, V. Shchukin, N.N. Ledentsov, V. Gaysler, N.D. Zakharov, P. Werner, D. Bimberg, 20 Gb/s direct modulation of 980 nm VCSELs based on submonolayer deposition of quantum dots, in Workshop on Optical Components for Broadband Communication, ed. by P.-Y. Fonjallaz, T.P. Pearsall, Proceedings of SPIE, vol. 6350 (2006), p. 635003-1

    Google Scholar 

  64. A. Mutig, G. Fiol, P. Moser, F. Hopfer, M. Kuntz, V. Shchukin, N. Ledentsov, D. Bimberg, S. Mikhrin, I. Krestnikov, D. Livshits, A. Kovsh, 120 \(^\circ \hbox{C}\) 20 Gbit/s operation of 980 nm single mode VCSEL, in Proceedings of IEEE International Semiconductor Laser Conference, ISLC 2008, Sorrento, Italy (2008), p. 9

    Google Scholar 

  65. N. Suzuki, H. Hatakeyama, K. Tokutome, M. Yamada, T. Anan, M. Tsuji, \(1.1\upmu\hbox{m}\) range InGaAs VCSELs for high-speed optical interconnections, in Proceedings of IEEE Lasers and Electro-Optical Society Annual Meeting, LEOS 2005, Sydney (2005), p. 394

    Google Scholar 

  66. K. Fukatsu, K. Shiba, Y. Suzuki, N. Suzuki, H. Hatakeyama, T. Anan, K. Yashiki, M. Tsuji, 30-Gbps transmission over 100 m-MMFs (GI32) using \(1.1\,\upmu\hbox{m}\)-range VCSELs and receivers, in Proceedings of International Conference on Indium Phosphide and Related Materials, Matsue, Japan (2007), p. 434

    Google Scholar 

  67. T. Anan, N. Suzuki, K. Yashiki, K. Fukatsu, H. Hatakeyama, T. Akagawa, K. Tokutome, M. Tsuji, High-speed \(1.1\mbox{-}\upmu\hbox{m}\)-range InGaAs VCSELs, in Proceedings of Optical Fiber Communication Conference, OFC 2008, San Diego, CA (2008)

    Google Scholar 

  68. H. Hatakeyama, T. Anan, T. Akagawa, K. Fukatsu, N. Suzuki, K. Tokutome, M. Tsuji, Highly reliable high speed \(1.1\upmu\hbox{m}\)-InGaAs/GaAsP-VCSELs, in Vertical-Cavity Surface-Emitting Lasers XIII, ed. by K.D. Choquette, C. Lei, Proceedings of SPIE, vol. 7229 (2009), p. 722902-1

    Google Scholar 

  69. P. Gilet, E. Pougeoise, L. Grenouillet, P. Grosse, N. Olivier, S. Poncet, A. Chelnokov, J.M. Gérard, R. Stevens, R. Hamelin, M. Hammar, J. Berggren, P. Sundgren, \(1.3\upmu\hbox{m}\) VCSELs: InGaAs/GaAs, GaInNAs/GaAs multiple quantum wells and InAs/GaAs quantum dots—three candidates as active material, in Vertical-Cavity Surface-Emitting Lasers XI, ed. by K.D. Choquette, J.K. Guenter, Proceedings of SPIE, vol. 6484 (2007), p. 64840F-1

    Google Scholar 

  70. S. Mogg, N. Chitica, U. Christiansson, R. Schatz, P. Sundgren, C. Asplund, M. Hammar, Temperature sensitivity of the threshold current of long-wavelength InGaAs-GaAs VCSELs with large gain-cavity detuning. IEEE J. Quantum Electron. 40(5), 453 (2004)

    Article  ADS  Google Scholar 

  71. J. Jewell, L. Graham, M. Crom, K. Maranowski, J. Smith, T. Fanning, M. Schnoes, Commercial GaInNAs VCSELs grown by MBE. Phys. Status Solidi C 5(9), 2951 (2008)

    Article  ADS  Google Scholar 

  72. D. Feezell, L.A. Johansson, D.A. Buell, L.A. Coldren, Efficient modulation of InP-based \(1.3\mbox{-}\upmu\hbox{m}\) VCSELs with AsSb-based DBRs. IEEE Photon. Technol. Lett. 17(11), 2253 (2005)

    Google Scholar 

  73. W. Hofmann, M. Ortsiefer, E. Rönneberg, C. Neumeyr, G. Böhm, M.-C. Amann, \(1.3\upmu\hbox{m}\) InGaAlAs/InP VCSEL for 10G Ethernet, in Proceedings of IEEE International Semiconductor Laser Conference, ISLC 2008, paper MB3, Sorrento, Italy (2008)

    Google Scholar 

  74. N. Nishiyama, C. Caneau, B. Hall, G. Guryanov, M.H. Hu, X.S. Liu, M.-J. Li, R. Bhat, C.E. Zah, Long-wavelength vertical-cavity surface-emitting lasers on InP with lattice matched AlGaInAs-InP DBR grown by MOCVD. IEEE J. Select. Topics Quantum Electron. 11(5), 990 (2005)

    Article  Google Scholar 

  75. X. Zhao, D. Parekh, E.K. Lau, H.-K. Sung, M.C. Wu, W. Hofmann, M.C. Amann, C.J. Chang-Hasnain, Novel cascaded injection-locked \(1.55\mbox{-}\upmu\hbox{m}\) VCSELs with 66 GHz modulation bandwidth. Opt. Express 15(22), 14810 (2007)

    Google Scholar 

  76. E.A. Avrutin, V.B. Gorfinkel, S. Luryi, K.A. Shore, Control of surface-emitting laser diodes by modulating the distributed Bragg mirror reflectivity: small-signal analysis. Appl. Phys. Lett. 63(18), 2460 (1993)

    Article  ADS  Google Scholar 

  77. J. van Eisden, M. Yakimov, V. Tokranov, M. Varanasi, O. Rumyantsev, E.M. Mohammed, I.A. Young, S.R. Oktyabrsky, High frequency resonance-free loss modulation in a duo-cavity VCSEL, in Vertical-Cavity Surface-Emitting Lasers XII, ed. by C. Lei, J.K. Guenter, Proceedings of SPIE, vol. 6908 (2008), p. 69080M-1

    Google Scholar 

  78. J. van Eisden, M. Yakimov, V. Tokranov, M. Varanasi, E.M. Mohammed, I.A. Young, S. Oktyabrsky, Modulation properties of VCSEL with intracavity modulator, in Vertical-Cavity Surface-Emitting Lasers XI, ed. by K.D. Choquette, J.K. Guenter, Proceedings of SPIE, vol. 6484 (2007), p. 64840A-1

    Google Scholar 

  79. J. van Eisden, M. Yakimov, V. Tokranov, M. Varanasi, E.M. Mohammed, I.A. Young, S.R. Oktyabrsky, Optically decoupled loss modulation in a duo-cavity VCSEL. IEEE Photon. Technol. Lett. 20(1), 42 (2008)

    Article  ADS  Google Scholar 

  80. A. Paraskevopoulos, H.J. Hensel, W.D. Molzow, H. Klein, N. Grote, N.N. Ledentsov, V.A. Shchukin, C. Möller, A.R. Kovsh, D.A. Livshits, I.L. Krestnikov, S.S. Mikhrin, P. Matthijsse, G. Kuyt, Ultra-high-bandwidth (>35 GHz) electrooptically-modulated VCSEL, in Proceedings of Optical Fiber Communication Conference, OFC 2006 Anaheim, CA (2006)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the support of DARPA via the C2OI project and IBM and Corning via the UC-MICRO program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Chia Chang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chang, YC., Coldren, L.A. (2013). Design and Performance of High-Speed VCSELs. In: Michalzik, R. (eds) VCSELs. Springer Series in Optical Sciences, vol 166. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24986-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24986-0_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24985-3

  • Online ISBN: 978-3-642-24986-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics