VCSELs pp 521-538 | Cite as

VCSELs for Optical Mice and Sensing

  • Martin Grabherr
  • Holger Moench
  • Armand Pruijmboom
Part of the Springer Series in Optical Sciences book series (SSOS, volume 166)


A real mass application for VCSELs is their use in optical mice and sensing. As illumination source for sensing applications VCSELs offer a better performance than LEDs. The even more advanced approach of laser self-mixing interference sensors allows a next step in integration, accuracy and new application fields. This chapter summarizes the major requirements towards VCSELs in illumination for sensing applications and gives typical specifications. A detailed description of the production process and the achieved reproducibility makes clear that these VCSELs are ideally suited for production in large quantities. In the second half of the chapter the self-mixing interference method is described in more detail and a highly integrated two axes laser Doppler interferometer is shown. This product is designed for a laser mouse but offers a number of other sensing applications.


Single Longitudinal Mode Standing Wave Pattern Laser Current Monitor Current Optical Mouse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
  2. 2.
    M.J. Rudd, A laser velocimeter employing the laser as mixer-oscillator. Rev. Sci. Instrum. 1, 723–726 (1968)CrossRefGoogle Scholar
  3. 3.
    A. Pruijmboom, M. Schemmann, J. Hellmig, J. Schutte, H. Moench, V. Pankert, VCSEL-based miniature laser-Doppler interferometer, Proceedings of SPIE, vol. 6908 (2008), pp. 69080I-1–69080I-7Google Scholar
  4. 4.
    D. Wiedenmann, M. Grabherr, R. Jaeger, R. King, High volume production of single-mode VCSELs, Proceedings of SPIE, vol. 6132 (2006), pp. 613202-1–613202-12Google Scholar
  5. 5.
    K.D. Choquette, R.P. Schneider Jr., K.L. Lear, K.M. Geib, Low threshold voltage vertical-cavity lasers fabricated by selective oxidation. Electron. Lett. 30(24), 2043–2044 (1994)CrossRefGoogle Scholar
  6. 6.
    R.L. Naone, L.A. Coldren, Surface energy model for the thickness dependence of the lateral oxidation of AlAs. J. Appl. Phys. 82(5), 2277–2280 (1997)Google Scholar
  7. 7.
    M. Grabherr, R. King, R. Jäger, D. Wiedenmann, P. Gerlach, D. Duckeck, C. Wimmer, Volume production of polarization controlled single-mode VCSELs, Proceedings of SPIE, vol. 6908 (2008), pp. 690803-1–690803-9Google Scholar
  8. 8.
    M. Verschuuren, H.v. Sprang, 3D photonic structures by sol-gel imprint lithography. Mater. Res. Soc. Symp. Proc. 1002, N03–N05 (2007)CrossRefGoogle Scholar
  9. 9.
    P. Debernardi, An efficient electro-thermo-optical model for vectorial and 3D VCSEL simulation, Proceedings of SPIE, vol. 7229 (2009), pp. 72290D-1–72290D-15Google Scholar
  10. 10.
    K. Petermann, Laser Diode Modulation and Noise (Kluwer, Dordrecht, 1988)Google Scholar
  11. 11.
    G. Giuliani, M. Norgia, S. Donati, T. Bosch, Laser diode self-mixing technique for sensing applications. J. Opt. A: Pure Appl. Opt. 4, 283–294 (2002)ADSCrossRefGoogle Scholar
  12. 12.
    M. Liess, G. Weijers, C. Heinks, A. van der Horst, A. Rommers, R. Duijve, G. Mimnagh, A miniaturized multidirectional optical motion sensor and input device based on laser self-mixing. Meas. Sci. Technol. 13, 2001–2006 (2002)ADSCrossRefGoogle Scholar
  13. 13.
    M. Grabherr, P. Gerlach, R. King, R. Jaeger, Integrated photodiodes complement the VCSEL, Proceedings of SPIE, vol. 7229 (2009), pp. 72290E-1–72290E-9Google Scholar
  14. 14.
    X. Raoul, T. Bosch, G. Plantier, N. Servagent, A double-laser diode onboard sensor for velocity measurements. IEEE Trans. Instr. Meas. 53(1), 95–101 (2004)CrossRefGoogle Scholar
  15. 15.
    F. de Mul, M. Koelink, A. Weijers, J. Greve, J. Aarnoudse, R. Graaff, A. Dassel, Self-mixing laser-Doppler velocimetry of liquid flow and of blood perfusion in tissue. Appl. Opt. 31(27), 5844–5851 (1992)ADSCrossRefGoogle Scholar
  16. 16.
    S. Shinohara, H. Yoshida, H. Ikeda, K. Nishide, M. Sumi, Compact and high-precision range finder with wide dynamic range and its application. IEEE Trans. Instr. Meas. 41(1), 40–44 (1992)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Martin Grabherr
    • 1
  • Holger Moench
    • 2
  • Armand Pruijmboom
    • 3
  1. 1.Philips Technologie GmbH U-L-M PhotonicsUlmGermany
  2. 2.Philips Research LaboratoriesAachenGermany
  3. 3.Philips Laser Lighting SystemsEindhovenThe Netherlands

Personalised recommendations