VCSELs pp 379-401 | Cite as

Red Emitting VCSEL

Chapter
Part of the Springer Series in Optical Sciences book series (SSOS, volume 166)

Abstract

This chapter describes the progress in development of vertical-cavity surface-emitting lasers (VCSEL) emitting in the red spectral region around 650 nm for data transmission over polymer optical fibers (POF). First, growth issues of red VCSEL using two different material systems, namely AlGaAs and AlGaInP, are introduced. In particular, the optical and electrical state-of-the-art characteristics as low threshold currents \(({\leq} 1\,\hbox{mA})\) and high output powers (several mW) are presented with a special focus on emission wavelength. Also the thermal budget and heat removal in the devices are pointed out with regard to the geometry of the VCSEL. Small-signal modulation response in terms of maximum resonance frequency in dependance on temperature behavior are discussed. Applications of these devices in optical interconnects are described and digital data transmission at data rates up to 2.1 Gbit/s over step-index POF is reported. These properties make red emitting VCSEL perfectly suited for high-speed low power consuming light sources for optical data communication via POF. By introducing InP quantum dots as gain material in red emitting VCSEL nearly temperature independent record low threshold current densities of around \(10\,\hbox{A}/\hbox{cm}^{2}\) could be observed.

Keywords

Distribute Bragg Reflector Aperture Diameter Modulation Bandwidth Optical Output Power Mirror Pair 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors would like to thank Erich Kohler for assistance with the MOVPE growth and Marcus Eichfelder, Michael Wiesner, Susanne Weidenfeld, Monika Ubl, and Hedi Gräbeldinger for help with the device processing.

References

  1. 1.
    R.P. Schneider, R.P. Bryan, J.A. Lott, G.R. Olbright, Visible (657 nm) InGaP/InAlGaP strained quantum well vertical-cavity surface-emitting laser. Appl. Phys. Lett. 60, 1830 (1992)ADSCrossRefGoogle Scholar
  2. 2.
    J.A. Lott, R.P. Schneider, Electrically injected visible (639–661 nm) vertical cavity surface emitting laser. Electron. Lett. 29, 830 (1993)ADSCrossRefGoogle Scholar
  3. 3.
    R.P. Schneider, J.A. Lott, Cavity design for improved electrical injection in InAlGaP/AlGaAs visible (639–661 nm) vertical-cavity surface-emitting laser diodes. Appl. Phys. Lett. 63, 917 (1993)ADSCrossRefGoogle Scholar
  4. 4.
    J.A. Lott, R.P. Schneider, K.D. Choquette, S.P. Kilcoyne, J.J. Figiel, Room temperature continuous wave operation of red vertical cavity surface emitting laser diodes. Electron. Lett. 29, 1693 (1993)ADSCrossRefGoogle Scholar
  5. 5.
    R.P. Schneider, K.D. Choquette, J.A. Lott, K.L. Lear, J.J. Figiel, K.J. Malloy, Efficient room-temperature continuous-wave AlGaInP/AlGaAs visible(670 nm) vertical-cavity surface-emitting laser diodes. IEEE Photon. Technol. Lett. 6, 313 (1994)ADSCrossRefGoogle Scholar
  6. 6.
    T. Kaino, M. Fujiki, S. Nara, S. Oikawa, Fabrication of a low-loss plastic optical fiber, U.S. Patent 4,381,269 (26 Apr. 1983)Google Scholar
  7. 7.
    J.-H. Lin, M.-J. Jou, C.-Y. Chen, B.-J. Lee, Effect of substrate misorientation on the optical properties and hole concentration of \(\hbox{Ga}_{0.5}\hbox{In}_{0.5}\hbox{P}\) and \((\hbox{Al}_{0.5}\hbox{Ga}_{0.5})_{0.5}\hbox{In}_{0.5}\hbox{P}\) grown by low pressure metalorganic vapor phase epitaxy. J. Cryst. Growth 124, 415 (1992)Google Scholar
  8. 8.
    Q. Liu, W. Prost, F.J. Tegude, Investigation of growth temperature dependent GaInP ordering in different crystal planes using X-ray diffraction and photoluminescence. Mat. Sci. Eng. B 44, 91 (1997)CrossRefGoogle Scholar
  9. 9.
    J.-R. Dong, S.-J. Chua, Y.-J. Wang, H.-R. Yuan, Substrate orientation dependence of In composition of AlGaInP epilayers grown by MOCVD. J. Cryst. Growth 269, 408 (2004)Google Scholar
  10. 10.
    E. Veuhoff, T.F. Kuech, B.S. Meyerson, A study of silicon incorporation in GaAs MOCVD layers. J. Electrochem. Soc. 132, 1958 (1985)CrossRefGoogle Scholar
  11. 11.
    W.G. Breiland, M.E. Coltrin, J.R. Creighton, H.Q. Hou, H.K. Moffat, J.Y. Tsao, Organometallic vapor phase epitaxy (OMVPE). Mater. Sci. Eng. R 24, 241 (1999)CrossRefGoogle Scholar
  12. 12.
    J. Piprek, T. Tröger, B. Schröter, J. Kolodzey, C.S. Ih, Thermal conductivity reduction in GaAs–AlAs distributed Bragg reflectors. IEEE Photon. Technol. Lett. 10, 81 (1998)ADSCrossRefGoogle Scholar
  13. 13.
    P. Zhou, J. Cheng, C.F. Schaus, S.Z. Sun, K. Zheng, E. Armour, C. Hains, W. Hsin, D.R. Myers, G.A. Vawter, Low series resistance high-efficiency GaAs/AlGaAs vertical-cavity surface-emitting lasers with continuously graded mirrors grown by MOCVD. IEEE Photon. Technol. Lett. 3, 1041 (1991)Google Scholar
  14. 14.
    R. Rossbach, T. Ballmann, R. Butendeich, F. Scholz, H. Schweizer, M. Jetter, Red VCSEL for automotive applications, in Photonics in the Automobile. Proceedings of SPIE, vol. 5663 (2004), pp.135–146Google Scholar
  15. 15.
    T. Lin, K. Zheng, C. Wang, X. Ma, Photoluminescence study of AlGaInP/GaInP quantum well intermixing induced by zinc impurity diffusion. J. Cryst. Growth 309, 140 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    B.T. Cunningham, L.J. Guido, J.E. Baker, J.S. Major, N. Holonyak, G.E. Stillman, Carbon diffusion in undoped, n-type, and p-type GaAs. Appl. Phys. Lett. 55, 687 (1989)ADSCrossRefGoogle Scholar
  17. 17.
    F. Dimroth, U. Schubert, F. Schienle, A. Bett, High C-doping of MOVPE grown thin \(\rm{Al_xGa_{1-x}As}\) layers for AlGaAs/GaAs interband tunneling devices. J. Electron. Mater. 29, 47 (2000)Google Scholar
  18. 18.
    T.F. Kuech, J.M. Redwing, Carbon doping in metalorganic vapor phase epitaxy. J. Cryst. Growth 145, 382 (1994)ADSCrossRefGoogle Scholar
  19. 19.
    E. Richter, P. Kurpas, D. Gutsche, M. Weyers, Carbon doped GaAs grown in low pressure-metalorganic vapor phase epitaxy using carbon tetrabromide. J. Electron. Mater. 24, 1719 (1995)ADSCrossRefGoogle Scholar
  20. 20.
    K. Tateno, Y. Kohama, C. Amano, Carbon doping and etching effects of \(\hbox{CBr}_4\) during metalorganic chemical vapor deposition of GaAs and AlAs. J. Cryst. Growth 172, 5 (1997)Google Scholar
  21. 21.
    R.P. Schneider, J.A. Lott, InAIP/InAlGaP distributed Bragg reflectors for visible vertical cavity surface-emitting lasers. Appl. Phys. Lett. 62, 2748 (1993)ADSCrossRefGoogle Scholar
  22. 22.
    H. Tanaka, Y. Kawamura, H. Asahi, Refractive indices of \(\hbox{In}_{0.49}\hbox{Ga}_{0.51-{\rm x}}\hbox{Al}_{\rm x}\hbox{P}\) lattice matched to GaAs. J. Appl. Phys. 59, 985 (1986)Google Scholar
  23. 23.
    S. Adachi, GaAs, AlAs, and \(\hbox{Al}_{\rm x}\hbox{Ga}_{1-{\rm x}}\hbox{As}{:}\) Material parameters for use in research and device applications. J. Appl. Phys. 58, R1 (1985)Google Scholar
  24. 24.
    D. Huffaker, D. Deppe, K. Kumar, T. Rogers, Native-oxide defined ring contact for low threshold vertical-cavity lasers. Appl. Phys. Lett. 65, 97 (1994)ADSCrossRefGoogle Scholar
  25. 25.
    K.D. Choquette, R.P. Schneider, M.H. Crawford, K.M. Geib, J.J. Figiel, Continuous wave operation of 640–660 nm selectively oxidised AlGaInP vertical-cavity lasers. Electron. Lett. 31, 1145 (1995)CrossRefGoogle Scholar
  26. 26.
    K.D. Choquette, R.P. Schneider, K.L. Lear, K.M. Geib, Low threshold voltage vertical-cavity lasers fabricated by selective oxidation. Electron. Lett. 30, 2043 (1994)CrossRefGoogle Scholar
  27. 27.
    E. Hegblom, B. Thibeault, R. Naone, L. Coldren, Vertical cavity lasers with tapered oxide apertures for low scattering loss. Electron. Lett. 33, 869 (1997)CrossRefGoogle Scholar
  28. 28.
    A. Bond, P. Dapkus, J. O’Brian, Aperture dependent loss analysis in vertical-cavity surface-emitting lasers. IEEE Photon. Technol. Lett. 11, 397 (1999)ADSCrossRefGoogle Scholar
  29. 29.
    T.M. Calvert, J.D. Lambkin, B. Corbett, A.F. Phillips, G.M. Crean, Fabrication of low-threshold red VCSELs. Mater. Sci. Semicond. Process. 3, 517 (2000)CrossRefGoogle Scholar
  30. 30.
    K. Johnson, M. Hibbs-Brenner, High output power 670 nm VCSELs, in Vertical-Cavity Surface-Emitting Lasers XI. Proceedings of SPIE, vol. 6484 (2007), pp. 6484–6504ADSGoogle Scholar
  31. 31.
    R. Roßbach, T. Ballmann, R. Butendeich, H. Schweizer, F. Scholz, M. Jetter, Red VCSEL for high-temperature applications. J. Cryst. Growth 272, 549 (2004)ADSCrossRefGoogle Scholar
  32. 32.
    H. Hou, H. Chui, K. Choquette, B. Hammons, W. Breiland, K. Geib, Highly uniform and reproducible vertical-cavity surface-emitting lasers grown by metalorganic vapor phase epitaxy with in situ reflectometry. IEEE Photon. Technol. Lett. 8, 1285 (1996)ADSCrossRefGoogle Scholar
  33. 33.
    M. Zorn, K. Haberland, A. Knigge, A. Bhattacharya, M. Weyers, J.T. Zettler, W. Richter, MOVPE process development for 650 nm VCSELS using optical in-situ techniques. J. Cryst. Growth 235, 25 (2002)ADSCrossRefGoogle Scholar
  34. 34.
    K. Haberland, M. Zorn, A. Klein, A. Bhattacharya, M. Weyers, J.T. Zettler, W. Richter, In-situ determination of interface roughness in MOVPE-grown visible VCSELs by reflectance spectroscopy. J. Cryst. Growth 248, 194 (2003)ADSCrossRefGoogle Scholar
  35. 35.
    M. Zorn, A. Knigge, U. Zeimer, A. Klein, H. Kissel, M. Weyers, G. Tränkle, MOVPE growth of visible vertical-cavity surface-emitting lasers (VCSELs). J. Cryst. Growth 248, 186 (2003)ADSCrossRefGoogle Scholar
  36. 36.
    A. Knigge, R. Franke, S. Knigge, B. Sumpf, K. Vogel, M. Zorn, M. Weyers, G. Tränkle, 650-nm vertical-cavity surface-emitting lasers: laser properties and reliability investigations. IEEE Photon. Technol. Lett. 14, 1385 (2002)ADSCrossRefGoogle Scholar
  37. 37.
    A. Knigge, A. Zorn, A. Weyers, G. Tränkle, High-performance vertical-cavity surface-emitting lasers with emission wavelength between 650 and 670 nm. Electron. Lett. 38, 882 (2002)CrossRefGoogle Scholar
  38. 38.
    T.E. Sale, G.C. Knowles, S.J. Sweeney, A.Onischenko, J.E.F. Frost, S.M. Pinches, J.Woodhead, \(-180\; {\rm to} +80^\circ\hbox{C}\) CW lasing in visible VCSELs, in Conference Digest 17th IEEE International Semiconductor Laser Conference, 2000, pp. 15–16Google Scholar
  39. 39.
    T. Calvert, B. Corbett, J.D. Lambkin, \(80^\circ\hbox{C}\) continuous wave operation of AlGalnP based visible VCSEL. Electron. Lett. 38, 222 (2002)Google Scholar
  40. 40.
    A. Knigge, M. Zorn, J. Sebastian, K. Vogel, H. Wenzel, M. Weyers, G. Tränkle, High-efficiency AlGalnP/AlGaAs vertical-cavity surface-emitting lasers with 650 nm wavelength. IEE Proc. Optoelectron. 150, 110 (2003)CrossRefGoogle Scholar
  41. 41.
    W. Nakwaski, M. Osinski, Thermal resistance of top-surface-emitting vertical-cavity semiconductor lasers and monolithic two-dimensional arrays. Electron. Lett. 28, 572 (1992)ADSCrossRefGoogle Scholar
  42. 42.
    R. Roßbach, R. Butendeich, T. Ballmann, B. Raabe, M. Jetter, H. Schweizer, F. Scholz, \(160^\circ\hbox{C}\) pulsed laser operation of AlGaInP-based vertical-cavity surface-emitting lasers. Electron. Lett. 39, 1654 (2003)Google Scholar
  43. 43.
    T. Ballmann, R. Rossbach, M. Jetter, M. Berroth, H. Schweizer, Analysis of the modulation behaviour of red VCSELs, in Nanophotonics for Communication: Materials and Devices. Proceedings of SPIE, vol. 5597 (2004), pp. 102–108ADSCrossRefGoogle Scholar
  44. 44.
    D. Kuchta, R. Schneider, K. Choquette, S. Kilcoyne, Large- and small-signal modulation properties of red (670 nm) VCSELs. IEEE Photon. Technol. Lett. 8, 307 (1996)ADSCrossRefGoogle Scholar
  45. 45.
    J.A. Lehman, R.A. Morgan, D. Carlson, M.H. Crawford, K.D. Choquette, High-frequency modulation characteristics of red VCSELs. Electron. Lett. 33, 298 (1997)CrossRefGoogle Scholar
  46. 46.
    A. Knigge, M. Zorn, H.J. Unold, F. Mederer, M. Weyers, G. Tränkle, High-performance vertical-cavity surface-emitting lasers with emission wavelengths from 650 nm to 670 nm. in Conference Digest 18th IEEE International Semiconductor Laser Conference, 2002, pp. 7–8Google Scholar
  47. 47.
    R.S. Geels, S.W. Corzine, J.W. Scott, D.B. Young, L.A. Coldren, Low threshold planarized vertical-cavity surface-emitting lasers. IEEE Photon. Technol. Lett. 2, 234 (1990)ADSCrossRefGoogle Scholar
  48. 48.
    T. Ballmann, R. Roßbach, R. Butendeich, B. Raabe, M. Jetter, F. Scholz, H. Schweizer, Analog modulation of 650-nm VCSELs. IEEE Photon. Technol. Lett. 18, 583 (2006)Google Scholar
  49. 49.
    L.A. Coldren, S.W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, New York, 1995)Google Scholar
  50. 50.
    K. Petermann, Laser Diode Modulation and Noise (Kluwer Academic Publishers, Berlin, 1991)Google Scholar
  51. 51.
    FTTH council, http://www.ftthcouncil.eu/ (2011)Google Scholar
  52. 52.
    G. Duggan, D.A. Barrow, T. Calvert, M. Maute, V. Hung, B. McGarvey, J.D. Lambkin, T. Wipiejewski, Red vertical cavity surface emitting lasers (VCSELs) for consumer applications, in Vertical-Cavity Surface-Emitting Lasers XII. Proceedings of SPIE, vol. 6908 (2008), p. 69080G-1Google Scholar
  53. 53.
    M. Wiesner, M. Eichfelder, R. Roßbach, M. Jetter, P. Michler, Red and fast vertical-emitting semiconductor laser for POF application, in Kommunikationskabelnetze, Beiträge der 15. ITG-Fachtagung. ITG-Fachberichte 212, 157–160 (2004)Google Scholar
  54. 54.
    M. Jetter, R. Roßbach, P. Michler, Red VCSELs for high-speed data communication via POF. Photonik International 1, 33 (2009)Google Scholar
  55. 55.
    T. Sale, D. Lancefield, B. Corbett, J. Justice, Ageing studies on red-emitting VCSELs for polymer optical fibre applications, in Conference Digest 19th IEEE International Semiconductor Laser Conference, 2004, pp. 75–76Google Scholar
  56. 56.
    R.S. Goldman, H.H. Wieder, K.L. Kavanagh, K. Rammohan, D.H. Rich, Anisotropic structural, electronic, and optical properties of InGaAs grown by molecular beam epitaxy on misoriented substrates. Appl. Phys. Lett. 65, 1424 (1994)ADSCrossRefGoogle Scholar
  57. 57.
    J. Chung, J. Chen, P.-K. Ko, C. Hu, M. Levi, The effects of low-angle off-axis substrate orientation on MOSFET performance and reliability. IEEE Trans. Electron Devices 38, 627 (1991)Google Scholar
  58. 58.
    K. Iga, Vertical-cavity surface-emitting laser: its conception and evolution. Jpn. J. Appl. Phys. 47, 1 (2008)ADSCrossRefGoogle Scholar
  59. 59.
    M. Asada, Y. Miyamoto, Y. Suematsu, Gain and the threshold of three-dimensional quantum-box lasers. IEEE J. Quantum Electron. 22, 1915 (1986)Google Scholar
  60. 60.
    Y. Arakawa, H. Sakaki, Multidimensional quantum well laser and temperature dependence of its threshold current. Appl. Phys. Lett. 40, 939 (1982)ADSCrossRefGoogle Scholar
  61. 61.
    D. Bimberg, Quantum dots for lasers, amplifiers and computing. J. Phys. D Appl. Phys. 38, 2055 (2005)ADSCrossRefGoogle Scholar
  62. 62.
    S. Reitzenstein, T. Heindel, C. Kistner, A. Rahimi-Iman, C. Schneider, S. Höfling, A. Forchel, Low threshold electrically pumped quantum dot-micropillar lasers. Appl. Phys. Lett. 93, 061104 (2008)ADSCrossRefGoogle Scholar
  63. 63.
    R.L. Sellin, C. Ribbat, M. Grundmann, N.N. Ledentsov, D. Bimberg, Close-to-ideal device characteristics of high-power InGaAs/GaAs quantum dot lasers. Appl. Phys. Lett. 78, 1207 (2001)ADSCrossRefGoogle Scholar
  64. 64.
    P. Michler, ed., Single Quantum Dots – Fundamentals Applications and New Concepts (Springer, Berlin, 2003)Google Scholar
  65. 65.
    M. Reischle, G.J. Beirne, W.-M. Schulz, M. Eichfelder, R. Roßbach, M. Jetter, P. Michler, Electrically pumped single-photon emission in the visible spectral range up to 80 K. Opt. Express 16, 12771 (2008)Google Scholar
  66. 66.
    M. Reischle, C. Kessler, W.-M. Schulz, M. Eichfelder, R. Roßbach, M. Jetter, P. Michler, Triggered single-photon emission from electrically excited quantum dots in the red spectral range. Appl. Phys. Lett. 97, 143513 (2010)ADSCrossRefGoogle Scholar
  67. 67.
    S.P. DenBaars, C.M. Reaves, V. Bressler-Hill, S. Varma, W.H. Weinberg, P.M. Petroff, Formation of coherently strained self-assembled InP quantum islands on InGaP/GaAs(001). J. Cryst. Growth 145, 721 (1994)ADSCrossRefGoogle Scholar
  68. 68.
    R. Roßbach, W.M. Schulz, M. Reischle, G.J. Beirne, M. Jetter, P. Michler, Red to green photoluminescence of InP-quantum dots in \(\hbox{Al}_{\rm x}\hbox{Ga}_{\rm 1-x}\hbox{InP}.\) J. Cryst. Growth 298, 595 (2006)Google Scholar
  69. 69.
    R. Roßbach, W.-M. Schulz, M. Eichfelder, M. Reischle, G.J. Beirne, M. Jetter, P. Michler, Red to orange electroluminescence from InP/AlGaInP quantum dots at room temperature. J. Cryst. Growth 310, 5098 (2008)ADSCrossRefGoogle Scholar
  70. 70.
    W.-M. Schulz, M. Eichfelder, R. Roßbach, M. Jetter, P. Michler, Low threshold InP/AlGaInP quantum dot in-plane laser emitting at 638 nm. Appl. Phys. Exp. 2, 112501 (2009)Google Scholar
  71. 71.
    W.-M. Schulz, M. Eichfelder, R. Roßbach, M. Jetter, P. Michler, InP/AlGaInP quantum dot laser emitting at 638 nm. J. Cryst. Growth 315, 123 (2011)Google Scholar
  72. 72.
    I.N. Stranski, L. Krastanow, Zur Theorie der orientierten Aussscheidung von Ionenkristallen aufeinander. Sitz. Ber. Akad. Wiss., Math.-naturwiss. Kl. Abt. IIb 146, 797 (1938)Google Scholar
  73. 73.
    W.-M. Schulz, R. Roßbach, M. Reischle, G.J. Beirne, M. Bommer, M. Jetter, P. Michler, Optical and structural properties of InP quantum dots embedded in \((\hbox{Al}_{\rm x}\hbox{Ga}_{1-{\rm x}})_{0.51}\hbox{In}_{0.49}\hbox{P}\). Phys. Rev. B 79, 035329 (2009)Google Scholar
  74. 74.
    M. Eichfelder, W.-M. Schulz, M. Reischle, M. Wiesner, R. Roßbach, M. Jetter, P. Michler, Room-temperature lasing of electrically pumped red-emitting \(\hbox{InP}/(\hbox{Al}_{0.20}\hbox{Ga}_{0.80})_{0.51}\hbox{In}_{0.49}\hbox{P}\) quantum dots embedded in a vertical microcavity. Appl. Phys. Lett. 95, 131107 (2009)Google Scholar
  75. 75.
    S. Ates, S.M. Ulrich, A. Ulhaq, S. Reitzenstein, A. Löffler, S. Höfling, A. Forchel, P. Michler, Non-resonant dot-cavity coupling and its potential for resonant single-quantum-dot spectroscopy. Nature Photon. 3, 724 (2009)ADSCrossRefGoogle Scholar
  76. 76.
    M. Kaniber, A. Laucht, A. Neumann, J.M. Villas-Bôas, M. Bichler, M.-C. Amann, J.J. Finley, Investigation of the nonresonant dot-cavity coupling in two-dimensional photonic crystal nanocavities. Phys. Rev. B 77, 161303 (2008)Google Scholar
  77. 77.
    S. Strauf, K. Hennessy, M.T. Rakher, Y.-S. Choi, A. Badolato, L.C. Andreani, E.L. Hu, P.M. Petroff, D. Bouwmeester, Self-tuned quantum dot gain in photonic crystal lasers. Phys. Rev. Lett. 96, 127404 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Michael Jetter
    • 1
  • Robert Roßbach
    • 1
  • Peter Michler
    • 1
  1. 1.Institut für Halbleiteroptik und Funktionelle GrenzflächenUniversität StuttgartStuttgartGermany

Personalised recommendations