Advertisement

Edge Clique Partition of K4-Free and Planar Graphs

  • Rudolf Fleischer
  • Xiaotian Wu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7033)

Abstract

Edge k -Clique Partition k -ECP is the problem of dividing the edge set of an undirected graph into a set of at most k edge-disjoint cliques, where k ≥ 1 is an input parameter. The problem is NP-hard but in FPT. We propose several improved FPT algorithms for k -ECP on K 4-free graphs, planar graphs, and cubic graphs.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alber, J., Fernau, H., Niedermeier, R.: Graph separators: a parameter view. Journal of Computer and System Sciences 67, 808–832 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Alon, N., Yuster, R., Zwick, U.: Color-coding. Journal of the ACM 42(4), 844–856 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bodlaender, H.L., Fellows, M.R., Heggernes, P., Mancini, F., Papadopoulos, C., Rosamond, F.: Clustering with partial information. Theoretical Computer Science 411(7-9), 1202–1211 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Cerioli, M.R., Faria, L., Ferreira, T.O., Martinhon, C.A.J., Protti, F., Reed, B.: Partition into cliques for cubic graphs: planar case, complexity and approximation. Discrete Applied Mathematics 156, 2270–2278 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Demaine, E.D., Fomin, F.V., Hajiaghayi, M., Thilikos, D.M.: Subexponential parametrized algorithms on bounded-genus graphs and h-minor-free graphs. Journal of the ACM 52(6), 866–893 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Djidjev, H.N., Venkatesan, S.M.: Reduced constants for simple cycle graph separation. Acta Informatica 34, 231–243 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)CrossRefzbMATHGoogle Scholar
  8. 8.
    Fellows, M.R., Knauer, C., Nishimura, N., Ragde, P., Rosamond, F., Stege, U., Thilikos, D.M., Whitesides, S.: Faster Fixed-Parameter Tractable Algorithms for Matching and Packing Problems. In: Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 311–322. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Figueroa, A., Bornemann, J., Jiang, T.: Clustering binary fingerprint vectors with missing values for DNA array data analysis. Journal of Computational Biology 11, 887–901 (2004)CrossRefGoogle Scholar
  10. 10.
    Fisher, D.: The number of triangles in a K 4-free graph. Discrete Mathematics 69, 203–205 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Fomin, F.V., Golovach, P., Thilikos, D.M.: Contraction Bidimensionality: The Accurate Picture. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 706–717. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Holyer, I.: The NP-completeness of some edge-partition problems. SIAM Journal on Computing 10(4), 713–717 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Mathieson, L., Prieto, E., Shaw, P.: Packing edge disjoint triangles: A parameterized view. In: Downey, R.G., Fellows, M.R., Dehne, F. (eds.) IWPEC 2004. LNCS, vol. 3162, pp. 127–137. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Mujuni, E., Rosamond, F.: Parameterized complexity of the clique partition problem. In: Proceedings of the 14th Computing: Australian Theory Symposium (CATS 2008), Conferences in Research and Practice in Information Technology, vol. 77, pp. 75–78 (2008)Google Scholar
  15. 15.
    Niedermeier, R.: Invitation to fixed parameter algorithms. Oxford University Press, U.K (2006)CrossRefzbMATHGoogle Scholar
  16. 16.
    Niedermeier, R., Rossmanith, P.: Upper Bounds for Vertex Cover Further Improved. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 561–570. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  17. 17.
    Orlin, J.: Contentment in graph theory: covering graphs with cliques. Indagationed Mathematicae 39, 406–424 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Schmidt, J.P., Siegel, A.: The spatial complexity of oblivious k-probe hash functions. SIAM Journal on Computing 19(5), 775–786 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Shaohan, M., Wallis, W.D., Lin, W.J.: The complexity of the clique partition number problem. Congressus Numerantium 67, 56–66 (1988); Proceedings of the 19th Southeastern Conference on Combinatorics, Graph Theory and ComputingMathSciNetzbMATHGoogle Scholar
  20. 20.
    Wu, X., Lin, Y., Fleischer, R.: Research of fixed parameter algorithm for clique partition problem. Computer Engineering 37(11), 92–93 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Rudolf Fleischer
    • 1
  • Xiaotian Wu
    • 1
  1. 1.School of CS and IIPLFudan UniversityShanghaiChina

Personalised recommendations