Advertisement

Abstract

We consider a problem that is a variant of the Voronoi diagram problem on the Euclidean plane, with the association of a given direction \(\vec{d_i}\) to each point p i in P. For each p i , the direction \(\vec{d_i}\) defines a visible half plane of p i . A point p in the plane is said to be controlled by p i if: (1) p is visible to p i ; (2) among all the points in P that p is visible to, p i is the closest one to p. The members in P partition the plane into different connected regions, each region is controlled by a member in P or is not controlled by any member in P. We give some preliminary results on this partition and propose some problems for future studies.

Keywords

Visible Angle Half Plane Voronoi Diagram Visible Area Euclidean Plane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aronov, B., Bose, P., Demaine, E.D., Gudmundsson, J., Iacono, J., Langerman, S., Smid, M.: Data Structures for Halfplane Proximity Queries and Incremental Voronoi Diagrams. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 80–92. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Aurenhammer, F.: Voronoi Diagrams - A Survey of a Fundamental Geometric Data Structure. ACM Computing Surveys 23, 345–405 (1991)CrossRefGoogle Scholar
  3. 3.
    Daescu, O., Mi, N., Shin, C.-S., Wolff, A.: Farthest-Point Queries with Geometric and Combinatorial Constraints. Computational Geometry 33, 174–185 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Preparata, F.P., Shamos, M.I.: Computational Geometry: An Introduction. Springer, New York (1985)CrossRefzbMATHGoogle Scholar
  5. 5.
    Voronoi, G.M.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième Mémoire: Recherches sur les parallélloèdres primitifs. J. Reine Angew. Math. 134, 198–287 (1908)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Yongxi Cheng
    • 1
  • Bo Li
    • 2
  • Yinfeng Xu
    • 1
  1. 1.School of ManagementXi’an Jiaotong UniversityXi’anChina
  2. 2.Department of Mathematics, School of ScienceXi’an Jiaotong UniversityXi’anChina

Personalised recommendations