Advertisement

Simple Characterization of LR-visibility Polygons

  • Xuehou Tan
  • Jing Zhang
  • Bo Jiang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7033)

Abstract

A simple polygon P is LR-visible if there are two points s, t on the boundary of P such that every point on the clockwise boundary of P from s to t is visible from some point of the other boundary of P from t to s and visa versa. In this paper, we give a simple, explict characterization of LR-visibility polygons. It is obtained by mapping the structure of non-redundant components used in determining LR-visibility into a set of directed chords of a circle. Using our characterization, we further develop a simple O(n) time algorithm for determining whether a given polygon is LR-visible. This greatly simplifies the existing algorithms for determining whether a simple polygon is LR-visible and for reporting all pairs s and t which admit LR-visibility as well.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bhattacharya, B.K., Ghosh, S.K.: Characterizing LR-visibility polygons and related problems. Comput. Geom. Theory Appl. 18, 19–36 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Heffernan, P.J.: An optimal algorithm for the two-guard problem. Int. J. Comput. Geom. Appl. 6(1), 15–44 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Das, G., Heffernan, P.J., Narasimhan, G.: LR-visibility in polygons. Comput. Geom. Theory Appl. 7(1), 37–57 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Ghosh, S.K.: Visibility problems in the plane. Cambridge University Press (2007)Google Scholar
  5. 5.
    Guibas, L., Hershberger, J., Leven, D., Sharir, M., Tarjan, R.: Linear time algorithms for visibility and shortest path problems inside triangulated simple polygons. Algorithmica 2, 209–233 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Suzuki, I., Yamashita, M.: Searching for mobile intruders in a polygonal region. SIAM J. Comp. 21(5), 863–888 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Tan, X.: A unified and efficient solution to the room search problem. Comput. Geom. Theory Appl. 40(1), 45–60 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Tseng, L.H., Heffernan, P.J., Lee, D.T.: Two-guard walkability of simple polygons. Int. J. Comput. Geom. Appl. 8(1), 85–116 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    O’Rourke, J.: Computational Geometry in C. Cambridge University Press (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Xuehou Tan
    • 1
    • 2
  • Jing Zhang
    • 1
  • Bo Jiang
    • 1
  1. 1.School of Information Science and TechnologyDalian Maritime UniversityDalianChina
  2. 2.School of Information Science and TechnologyTokai UniversityHiratsukaJapan

Personalised recommendations