Skip to main content

Contextual Image Annotation via Projection and Quantum Theory Inspired Measurement for Integration of Text and Visual Features

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 7052)


Multimedia information retrieval suffers from the semantic gap, a difference between human perception and machine representation of images. In order to reduce the gap, a quantum theory inspired theoretical framework for integration of text and visual features has been proposed. This article is a follow-up work on this model. Previously, two relatively straightforward statistical approaches for making associations between dimensions of both feature spaces were employed, but with unsatisfactory results. In this paper, we propose to alleviate the problem regarding unannotated images by projecting them onto subspaces representing visual context and by incorporating a quantum-like measurement. The proposed principled approach extends the traditional vector space model (VSM) and seamlessly integrates with the tensor-based framework. Here, we experimentally test the novel association methods in a small-scale experiment.


  • multimedia retrieval
  • quantum theory
  • image annotation
  • tensor product

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Duygulu, P., Barnard, K., de Freitas, J.F.G., Forsyth, D.: Object Recognition as Machine Translation: Learning a Lexicon for a Fixed Image Vocabulary. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2353, pp. 349–354. Springer, Heidelberg (2002)

    Google Scholar 

  2. Yang, J., Jiang, Y.G., Hauptmann, A.G., Ngo, C.W.: Evaluating Bag-of-Visual-Words Representations in Scene Classification. In: Proc. of the Int. Workshop on Multimedia IR, vol. 206 (2007)

    Google Scholar 

  3. Jamieson, M., Dickinson, S., Stevenson, S., Wachsmuth, S.: Using Language to Drive the Perceptual Grouping of Local Image Features. In: IEEE Comp. Society Conference on Comp. Vision and Pattern Rec., vol. 2, pp. 2102–2109 (2006)

    Google Scholar 

  4. Li, J., Wang, J.Z.: Real-Time Computerized Annotation of Pictures. IEEE Tran. on Pattern Anal. and Machine Int. 30, 985–1002 (2008)

    CrossRef  Google Scholar 

  5. Yanai, K.: Generic Image Classification Using Visual Knowledge on the Web. In: Proc. of the 11-th ACM Int. Conf. on Multimedia, pp. 167–176 (2003)

    Google Scholar 

  6. Tjondronegoro, D., Zhang, J., Gu, J., Nguyen, A., Geva, S.: Integrating Text Retrieval and Image Retrieval in XML Document Searching. In: Advances in XML Inf. Retr. and Evaluation (2005)

    Google Scholar 

  7. Rahman, M.M., Bhattacharya, P., Desai, B.C.: A Unified Image Retrieval Framework on Local Visual and Semantic Concept-Based Feature Spaces. J. Visual Communication and Image Representation 20, 450–462 (2009)

    CrossRef  Google Scholar 

  8. Simpson, M., Rahaman, M.M.: Text and Content Based Approaches to Image Retrieval for the ImageClef2009 Medical Retrieval Track. In: Working Notes for the CLEF 2009 Workshop (2009)

    Google Scholar 

  9. Min, P., Kazhdan, M., Funkhouser, T.: A comparison of text and shape matching for retrieval of online 3D models. In: Heery, R., Lyon, L. (eds.) ECDL 2004. LNCS, vol. 3232, pp. 209–220. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

  10. van Rijsbergen, C.J.: The Geometry of Information Retrieval. Cambridge University Press, Cambridge (2004)

    CrossRef  MATH  Google Scholar 

  11. Griffiths, R.B.: Consistent Quantum Theory. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  12. Melucci, M.: Context Modeling and Discovery Using Vector Space Bases. In: Proc. of the ACM Conf. on Inf. and Knowledge Management, pp. 808–815 (2005)

    Google Scholar 

  13. Di Buccio, E., Melucci, M., Song, D.: Towards Predicting Relevance Using a Quantum-Like Framework. In: The 33rd European Conference on IR, pp. 19–21 (2011)

    Google Scholar 

  14. Biancalana, C., Lapolla, A., Micarelli, A.: Personalized web search using correlation matrix for query expansion. In: Cordeiro, J., Hammoudi, S., Filipe, J. (eds.) Web Information Systems and Technologies. LNBIP, vol. 18, pp. 186–198. Springer, Heidelberg (2009)

    CrossRef  Google Scholar 

  15. Aharonov, Y., Albert, D.Z., Au, C.K.: New Interpretation of the Scalar Product in Hilbert Space. Phys. Rev. Lett. 47, 1029–1031 (1981)

    CrossRef  MathSciNet  Google Scholar 

  16. Wang, J., Song, D., Kaliciak, L.: Tensor Product of Correlated Text and Visual Features: A Quantum Theory Inspired Image Retrieval Framework. In: AAAI-Fall 2010 Symp. on Quant. Inf. for Cognitive, Social, and Semantic Processes, pp. 109–116 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations


Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kaliciak, L., Wang, J., Song, D., Zhang, P., Hou, Y. (2011). Contextual Image Annotation via Projection and Quantum Theory Inspired Measurement for Integration of Text and Visual Features. In: Song, D., Melucci, M., Frommholz, I., Zhang, P., Wang, L., Arafat, S. (eds) Quantum Interaction. QI 2011. Lecture Notes in Computer Science, vol 7052. Springer, Berlin, Heidelberg.

Download citation

  • DOI:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24970-9

  • Online ISBN: 978-3-642-24971-6

  • eBook Packages: Computer ScienceComputer Science (R0)