Advertisement

Envisioning Dynamic Quantum Clustering in Information Retrieval

  • Emanuele Di Buccio
  • Giorgio Maria Di Nunzio
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7052)

Abstract

Dynamic Quantum Clustering is a recent clustering technique which makes use of Parzen window estimator to construct a potential function whose minima are related to the clusters to be found. The dynamic of the system is computed by means of the Schrödinger differential equation. In this paper, we apply this technique in the context of Information Retrieval to explore its performance in terms of the quality of clusters and the efficiency of the computation. In particular, we want to analyze the clusters produced by using datasets of relevant and non-relevant documents given a topic.

Keywords

Information Retrieval Singular Value Decomposition Relevant Document Information Retrieval System Document Cluster 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Xu, R., Ii: Survey of clustering algorithms. IEEE Transactions on Neural Networks 16(3), 645–678 (2005)CrossRefGoogle Scholar
  2. 2.
    Becker, B., Kohavi, R., Sommerfield, D.: Visualizing the simple Bayesian classifier. In: Information Visualization in Data Mining and Knowledge Discovery, pp. 237–249 (2001)Google Scholar
  3. 3.
    Weinstein, M., Horn, D.: Dynamic quantum clustering: A method for visual exploration of structures in data. Phys. Rev. E 80(6), 066117 (2009)CrossRefGoogle Scholar
  4. 4.
    Premalatha, K., Natarajan, A.M.: A literature review on document clustering. Information Technology Journal 9(5), 993–1002 (2010)CrossRefGoogle Scholar
  5. 5.
    Hearst, M.A., Pedersen, J.O.: Reexamining the cluster hypothesis: scatter/gather on retrieval results. In: Proceedings of SIGIR 1996, pp. 76–84. ACM, New York (1996)Google Scholar
  6. 6.
    Lamprier, S., Amghar, T., Saubion, F., Levrat, B.: Traveling among clusters: a way to reconsider the benefits of the cluster hypothesis. In: Proceedings of SAC 2010, pp. 1774–1780. ACM, New York (2010)Google Scholar
  7. 7.
    Salton, G.: The SMART Retrieval System—Experiments in Automatic Document Processing. Prentice-Hall, Inc., Upper Saddle River (1971)Google Scholar
  8. 8.
    Jardine, N., van Rijsbergen, C.J.: The use of hierarchic clustering in information retrieval. Information Storage and Retrieval 7(5), 217–240 (1971)CrossRefGoogle Scholar
  9. 9.
    Nasios, N., Bors, A.G.: Kernel-based classification using quantum mechanics. Pattern Recognition 40, 875–889 (2007)CrossRefzbMATHGoogle Scholar
  10. 10.
    Robertson, S.E., Jones, K.S.: Relevance weighting of search terms. Journal of the American Society for Information Science 27(3), 129–146 (1976)CrossRefGoogle Scholar
  11. 11.
    Horn, D., Gottlieb, A.: Algorithm for data clustering in pattern recognition problems based on quantum mechanics. Phys. Rev. Lett. 88(1), 018702 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Emanuele Di Buccio
    • 1
  • Giorgio Maria Di Nunzio
    • 1
  1. 1.Department of Information EngineeringUniversity of PaduaPaduaItaly

Personalised recommendations