Skip to main content

Research on Classification Methods of Glycoside Hydrolases Mechanism

  • Conference paper
  • 3458 Accesses

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 7062)

Abstract

Data mining methods are helpful in analyzing large amount of sequence and structure information of proteins. Classifiers can do a good job in achieving accurate mechanism classification of glycoside hydrolases which have different physicochemical properties. This classification method is not limited by reaction conditions. In this paper, a new method is proposed to classify the catalytic mechanism of a certain glycoside hydrolase according to their sequence and structure features by using several classifiers. Through making a comparison of the classification results achieved by the k-nearest neighbor (kNN) classifier and the Naive Bayes (NB) classifier and Multilayer Perceptron (MLP)classifier, the kNN classifier is approved to be an ideal choice in classifying and predicting the catalytic mechanisms of glycoside hydrolases with various physicochemical properties.

Keywords

  • Mechanism classification
  • K-Nearest Neighbor
  • Glycoside hydrolase

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-24955-6_73
  • Chapter length: 8 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-24955-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Henrissat, B., Davies, G.: Structural and sequence-based classification of glycoside hydrolases. Current Opinion in Structural Biology 7, 637–644 (1997)

    CrossRef  Google Scholar 

  2. Yang, J.K., Yoon, H.J., Ahn, H.J., Il Lee, B., Pedelacq, J., Liong, E.C., Berendzen, J., Laivenieks, M., Vieille, C., Zeikus, G.J.: Crystal Structure of [beta]-d-Xylosidase from Thermoanaerobacterium saccharolyticum, a Family 39 Glycoside Hydrolase. Journal of Molecular Biology 335, 155–165 (2004)

    CrossRef  Google Scholar 

  3. Uversky, V.N., Wohlkönig, A., Huet, J., Looze, Y., Wintjens, R.: Structural Relationships in the Lysozyme Superfamily: Significant Evidence for Glycoside Hydrolase Signature Motifs. PLoS ONE 5, e15388 (2010)

    Google Scholar 

  4. Honda, Y., Fushinobu, S., Hidaka, M., Wakagi, T., Shoun, H., Taniguchi, H., Kitaoka, M.: Alternative strategy for converting an inverting glycoside hydrolase into a glycosynthase. Glycobiology 18, 325 (2008)

    CrossRef  Google Scholar 

  5. Borro, L.C., Oliveira, S.R.M., Yamagishi, M.E.B., Mancini, A.L., Jardine, J.G., Mazoni, I., dos Santos, E.H., Higa, R.H., Kuser, P.R., Neshich, G.: Predicting enzyme class from protein structure using Bayesian classification. Genet. Mol. Res. 5, 193–202 (2006)

    Google Scholar 

  6. Lee, B.J., Lee, H.G., Lee, J.Y., Ryu, K.H.: Classification of Enzyme Function from protein sequence based on feature representation. In: IEEE International Conference on Bioinformatics and Bioengineering - BIBE, pp. 741–747. IEEE Press, Boston (2007)

    Google Scholar 

  7. Nigsch, F., Bender, A., van Buuren, B., Tissen, J., Nigsch, E., Mitchell, J.B.O.: Melting point prediction employing k-nearest neighbor algorithms and genetic parameter optimization. Journal of Chemical Information and Modeling 46, 2412–2422 (2006)

    CrossRef  Google Scholar 

  8. Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M., Appel, R.D., Bairoch, A.: Protein identification and analysis tools on the ExPASy server. In: The Proteomics Protocols Handbook, pp. 571–607 (2005)

    Google Scholar 

  9. Nasibov, E.N., Kandemir-Cavas, C.: Efficiency analysis of KNN and minimum distance-based classifiers in enzyme family prediction. Computational Biology and Chemistry 33, 461–464 (2009)

    CrossRef  Google Scholar 

  10. Valavanis, I.K., Spyrou, G.M., Nikita, K.S.: A comparative study of multi-classification methods for protein fold recognition. International Journal of Computational Intelligence in Bioinformatics and Systems Biology 1, 332–346 (2010)

    CrossRef  Google Scholar 

  11. Towfic, F., Caragea, C., Dobbs, D., Honavar, V.: Struct-NB: predicting protein-RNA binding sites using structural features. International Journal of Data Mining and Bioinformatics 4, 21–43 (2010)

    CrossRef  Google Scholar 

  12. Nanni, L., Lumini, A.: A further step toward an optimal ensemble of classifiers for peptide classification, a case study: HIV protease. Protein and Peptide Letters 16, 163–167 (2009)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yang, F., Wang, L. (2011). Research on Classification Methods of Glycoside Hydrolases Mechanism. In: Lu, BL., Zhang, L., Kwok, J. (eds) Neural Information Processing. ICONIP 2011. Lecture Notes in Computer Science, vol 7062. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24955-6_73

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24955-6_73

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24954-9

  • Online ISBN: 978-3-642-24955-6

  • eBook Packages: Computer ScienceComputer Science (R0)