Advertisement

Reading Your Mind: EEG during Reading Task

  • Tan Vo
  • Tom Gedeon
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7062)

Abstract

This paper demonstrates the ability to study the human reading behaviors with the use of Electroencephalography (EEG). This is a relatively new research direction because, obviously, gaze-tracking technologies are used specifically for those types of studies. We suspect, EEG, with the capability of recording brain-wave activities from the human scalp, in theory, could exhibit potential attributes to replace gaze-tracking in such research. To prove the concept, in this paper, we organized a BCI experiment and propose a model for effective classifying EEG data in comparison to the accuracy of gaze-tracking. The results show that by using EEG, we could achieve comparable results against the more established methods while demonstrating a potential live EEG applications. This paper also discusses certain points of consideration for using EEG in this work.

Keywords

BCI Artificial Neural Network EEG Reading tasks Signal Processing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zhu, D., Gedeon, T., Taylor, K.: Keyboard before Head Tracking Depresses User Success in Remote Camera Control. In: Gross, T., Gulliksen, J., Kotzé, P., Oestreicher, L., Palanque, P., Prates, R.O., Winckler, M. (eds.) INTERACT 2009. LNCS, vol. 5727, pp. 319–331. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Byvatov, E., Fechner, U., Sadowski, J., Schneider, G.: Comparison of Support Vector Machine and Artificial Neural Network Systems for Drug/Nondrug Classification. Journal of Chemical Information and Computer Sciences, 1882–1889 (2003)Google Scholar
  3. 3.
    Hagan, M.T., Menhaj, M.B.: Training feedforward networks with the Marquardt algorithm. IEEE Transactions on Neural Networks 5(6), 989–993 (1994), doi:10.1109/72.329697CrossRefGoogle Scholar
  4. 4.
    Miller, G.A.: The Magical Number Seven, Plus or Minus Two: Some Limits on Our Capacity for Processing Information. In: The Psychology of Communication: Seven Essays. Penguin Books, Inc. (1970)Google Scholar
  5. 5.
    Mendis, B.S.U., Gedeon, T.D., Koczy, L.T.: Learning Generalized Weighted Relevance Aggregation Operators Using Levenberg-Marquardt Method. In: International Conference on Hybrid Intelligent Systems (2006)Google Scholar
  6. 6.
    Vo, T., Mendis, B.S.U., Gedeon, T.: Gaze Pattern and Reading Comprehension. In: Wong, K.W., Mendis, B.S.U., Bouzerdoum, A. (eds.) ICONIP 2010, Part II. LNCS, vol. 6444, pp. 124–131. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Makeig, S., Debener, S., Onton, J., Delorme, A.: Mining event-related brain dynamics. Trends in Cognitive Science 8, 204–210 (2004); Summarizes benefits and pitfalls of combining ICA, time/frequency analysis, and ERP-image visualization. (2004) Google Scholar
  8. 8.
    Hallez, H., et al.: Muscle and eye movement artifact removal prior to EEG source localization. In: Conference Proceedings of the International Conference of IEEE Engineering in Medicine and Biology Society, vol. 1, pp. 1002–1005 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Tan Vo
    • 1
  • Tom Gedeon
    • 1
  1. 1.School of Computer ScienceThe Australian National UniversityCanberraAustralia

Personalised recommendations