Exploring Associations between Changes in Ambient Temperature and Stroke Occurrence: Comparative Analysis Using Global and Personalised Modelling Approaches

  • Wen Liang
  • Yingjie Hu
  • Nikola Kasabov
  • Valery Feigin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7062)

Abstract

Stroke is a major cause of disability and mortality in most economically developed countries that increasing global importance. Up till now, there is uncertainty regarding the effect of weather conditions on stoke occurrence. This paper is offering a comparative study of exploring associations between changes in ambient temperature and stroke occurrence using global and personalised modelling methods. Our study has explored weather conditions have significant impact on stroke occurrence. In addition, our experimental results show that the personalised modelling approach outperforms the global modelling approach.

Keywords

weather stroke occurrence personalised modelling global modelling FaLK-SVM 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chen, Z.Y., Chang, S.F., Su, C.L.: Weather and stroke in a subtropical area: Ilan, Taiwan. Stroke 26, 569–572 (1995)CrossRefGoogle Scholar
  2. 2.
    Feigin, V.L., Nikitin, Y.P., Bots, M.L., Vinogradova, T.E., Grobbee, D.E.: A population-based study of the associations of stroke occurrence with weather parameters in Siberia, Russia (1982C92). Eur. J. Neurol. 7, 171–178 (2000)CrossRefGoogle Scholar
  3. 3.
    Ricci, S., Celani, M.G., Vitali, R., La Rosa, F., Righetti, E., Duca, E.: Diurnal and seasonal variations in the occurrence of stroke: a community-based study. Neuroepidemiology 11, 59–64 (1992)CrossRefGoogle Scholar
  4. 4.
    Biller, J., Jones, M.P., Bruno, A., Adams, H.P., Banwart, K.: Seasonal variation of stroke: does it exist? Neuroepidemiology 7, 89–98 (1988)CrossRefGoogle Scholar
  5. 5.
    Nyquist, P.A., Brown, R.D., Wiebers, D.O., Crowson, C.S., OFallon, W.M.: Circadian and seasonal occurrence of subarachnoid and intracerebral hemorrhage. Neurology 56, 190–193 (2001)CrossRefGoogle Scholar
  6. 6.
    Khosla, A., Cao, Y., Lin, C.Y., Chiu, H.K., Hu, J.L., Lee, H.: An itegrated machine learning approach to stroke prediction. In: 16th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. ACM, Washington (2010)Google Scholar
  7. 7.
    Kasabov, N.: Evolving connectionist systems: the knowledge engineering approach. Springer, London (2007)MATHGoogle Scholar
  8. 8.
    Vapnik, V., Lerner, A.: Pattern recognition using generalized portrait method. Automation and Remote Control 24, 774–780 (1963)Google Scholar
  9. 9.
    Aizerman, E.M., Braverman, L.R.: Theoretical foundations of the potential function method in pattern recognition learning. Automat. Remote Control 25, 821–837 (1964)Google Scholar
  10. 10.
    Ginsburg, G.S., McCarthy, J.J.: Personalized medicine: revolutionizing drug discovery and patient care. Trends in Biotechnology 19(12), 491–496 (2001)CrossRefGoogle Scholar
  11. 11.
    Fix, E., Hodges, J.L.: Discriminatory analysis: Nonparametric discrimination: Consistency properties. Randolph Field, Texas (1951)CrossRefMATHGoogle Scholar
  12. 12.
    Dudani, S.A.: The distance-weighted k-nearest-neighbor rule. IEEE Transactions on System Man and Cybernetics, 325–327 (1976)Google Scholar
  13. 13.
    Song, Q., Kasabov, N.: TWNFI - a transductive neuro-fuzzy inference system with weighted data normalization for personliased modelling. Neural Networks 19, 1591–1596 (2006)CrossRefMATHGoogle Scholar
  14. 14.
    Segata, N., Blanzieri, E.: Fast and scalable local kernel machines. Journal of Machine Learning Research 11, 1883–1926 (2010)MathSciNetMATHGoogle Scholar
  15. 15.
    Beygelzimer, A., Kakade, A., Langford, J.: Cover trees for nearest neighbour. In: 23rd International Conference on Machine Learning, Pittsburgh (2006)Google Scholar
  16. 16.
    Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machines (2001), http://www.csie.ntu.edu.tw/~cjlin/libsvm
  17. 17.
    Mukamal, K.J., Wellenius, G.A., Suh, H.H., Mittleman, M.A.: Weather and air pollution as triggers of severe headaches. Neurology 72, 922–927 (2009)CrossRefGoogle Scholar
  18. 18.
  19. 19.
    Swets, J.: Measuring the accuracy of diagnostic systems. Science 240, 1285–1293 (1988)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Zou, K.H.: Receiver operating characteristic (ROC) literature research (2002), http://splweb.bwh.harvard.edu:8000/pages/ppl/zou/roc.html
  21. 21.
    Zweig, M.H., Campbell, G.: Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin. Chem. 39(4), 561–577 (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Wen Liang
    • 1
  • Yingjie Hu
    • 1
  • Nikola Kasabov
    • 1
  • Valery Feigin
    • 1
  1. 1.Knowledge Engineering and Discovery Research InstituteAuckland University of TechnologyNew Zealand

Personalised recommendations