Skip to main content

Medial Axis for 3D Shape Representation

  • Conference paper
Book cover Neural Information Processing (ICONIP 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7062))

Included in the following conference series:

  • 3790 Accesses

Abstract

Cortical representation of shape is a crucial problem in vision science. Recent physiological studies on monkeys have reported that neurons in the primary visual cortex (V1) represent 2D shape by Medial Axis (MA). Physiology has also shown that a set of smooth surfaces represents 3D shape in a higher stage (IT). Based on the physiological evidence, we propose that monocular retinal images yield 2D-MAs that represent 2D-surfaces in V1, and the 2D-MAs are fused to yield 3D-MA that represents 3D-surfaces in IT. To investigate this hypothesis, we developed a computational model based on the physiological constraints, and evaluated its power on the shape encoding. The model represented a variety of 3D-shapes including natural shapes, with reconstruction errors of around 0.2 regardless of the shape complexity. The results support the visual system encodes monocular 2D-MAs in V1 and fuses them into 3D-MA in IT so that 3D-shape is represented by smooth surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lee, T.S., Mumford, D., Romero, R., Lamme, V.A.F.: The role of the primary visual cortex in higher level vision. Vision Res. 38, 2429–2454 (1998)

    Article  Google Scholar 

  2. Kovacs, I., Julesz, B.: Perceptual sensitivity maps within globally defined visual shapes. Nature 370, 644–646 (1994)

    Article  Google Scholar 

  3. Hatori, Y., Sakai, K.: Robust Detection of Medial-Axis by Onset Synchronization of Border-Ownership Selective Cells and Shape Reconstruction from Its Medial-Axis. In: Köppen, M., Kasabov, N., Coghill, G. (eds.) ICONIP 2008. LNCS, vol. 5506, pp. 301–309. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  4. Yamane, Y., Carlson, E.T., Bowman, K.C., Wang, Z., Connor, C.E.: A neural code for three dimensional shape in macaque inferotemporal cortex. Nat. Neurosci. 11, 1352–1360 (2008)

    Article  Google Scholar 

  5. Parker, A.J.: Binocular depth perception and the cerebral cortex. Nat. Rev. Neurosci. 8, 379–391 (2007)

    Article  Google Scholar 

  6. Heydt, R., Zhou, H., Friedman, H.S.: Representation of stereoscopic edges in monkey visual cortex. Vision Res. 40, 1955–1967 (2000)

    Article  Google Scholar 

  7. Sakai, K., Nishimura, H.: Surrounding suppression and facilitation in the determination of border-ownership. J. Cognitive Neurosci. 18, 562–579 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Qiu, W., Sakai, K. (2011). Medial Axis for 3D Shape Representation. In: Lu, BL., Zhang, L., Kwok, J. (eds) Neural Information Processing. ICONIP 2011. Lecture Notes in Computer Science, vol 7062. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24955-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24955-6_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24954-9

  • Online ISBN: 978-3-642-24955-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics