Advertisement

Applications of Pathway Logic Modeling to Target Identification

  • Anupama Panikkar
  • Merrill Knapp
  • Huaiyu Mi
  • Dave Anderson
  • Krishna Kodukula
  • Amit K. Galande
  • Carolyn Talcott
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7000)

Abstract

To explore the role of proteases in pathogenesis and as potential drug targets we need to elucidate their function and effect on biological networks. In this paper, we describe the application of Pathway Logic (PL) ( http://pl.csl.sri.com/ ) to the symbolic modeling of the interaction networks of proteases of Gram-positive bacteria and the use of Pathway Logic Assistant tool (PLA) to browse and query these models. Pathway Logic is a systems biology approach to biological processes as integrated systems rather than isolated parts based on formal methods and rewriting logic. These models are developed using Maude, a formal language and tool set based on rewriting logic. We show how this approach can be used to represent and analyze systems at multiple levels of details. The Pathway Logic Assistant tool enables us to identify key proteases and regulatory molecules – ‘choke points’ by comparing different pathways or networks within and across species and to predict how these molecules, if inhibited or avoided would affect the pathway or network.

Keywords

Target Identification Potential Drug Target Pilus Assembly Heme Transport Algebraic Data Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Supuran, C.T., Scozzafava, A., Clare, B.W.: Bacterial Protease Inhibitors. Med. Res. Rev. 22(4), 329–372 (2002)CrossRefGoogle Scholar
  2. 2.
    Travis, J., Potempa, J.: Bacterial Proteinases as Targets for the Develop-ment of Second-Generation Antibiotics. Biochim. Biophys. Acta 1477, 35–50 (2000)Google Scholar
  3. 3.
    Miyoshi, S.I., Shinoda, S.: Bacterial Metalloprotease as the Toxic Factor in Infection. J. Toxicol. Toxin. Rev. 16, 177–194 (1997)Google Scholar
  4. 4.
    Talcott, C., Eker, S., Knapp, M., Lincoln, P., Laderoute, K.: Pathway Logic Modeling of Protein Functional Domains in Signal Transduction. In: Proceedings of the Pacific Symposium on Biocomputing, vol. 9, pp. 568–580 (2004)Google Scholar
  5. 5.
    Eker, S., Knapp, M., Laderoute, K., Lincoln, P., Meseguer, J., Sonmez, K.: Pathway Logic: Symbolic Analysis of Biological Signaling. In: Pro-ceedings of the Pacific Symposium on Biocomputing, vol. 7, pp. 400–412 (2002)Google Scholar
  6. 6.
    Eker, S., Knapp, M., Laderoute, K., Lincoln, P., Talcott, C.: Pathway Logic: Executable Models of Biological Networks. In: Fourth International Workshop on Rewriting Logic and Its Applications. Electronic Notes in Theoretical Computer Science, vol. 71 (2002)Google Scholar
  7. 7.
    Meseguer, J.: Conditional Rewriting Logic as a Unified Model of Concurrency. Theoretical Computer Science 96(1), 73–155 (1992)Google Scholar
  8. 8.
    Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott, C.: All About Maude - A High-Performance Logical Framework. How to Specify, Program and Verify Systems in Rewriting Logic. LNCS, vol. 4350. Springer, Heidelberg (2007)Google Scholar
  9. 9.
    Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott, C.L.: The Maude 2.0 system. In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706, pp. 76–87. Springer, Heidelberg (2003)Google Scholar
  10. 10.
    Talcott, C., Dill, D.L.: The Pathway Logic Assistant. Proceedings of Computational Methods in Systems Biology, 228–239 (2005)Google Scholar
  11. 11.
    Marraffini, L.A., DeDent, A.C., Schneewind, O.: Sortases and the Art of Anchoring Proteins to the Envelopes of Gram-Positive Bacteria. Micro-biol. Mol. Biol. Rev. 70(1), 192–221 (2006)Google Scholar
  12. 12.
    Skaar, E.P., Gaspar, A.H., Schneewind, O.: IsdG and IsdI, Heme-Degrading Enzymes in the Cytoplasm of Staphylococcus aureus. J. Biol. Chem. 279(1), 436–443 (2004)Google Scholar
  13. 13.
    Skaar, E.P., Schneewind, O.: Iron-Regulated Surface Determinants (Isd) of Staphylococcus aureus: Stealing Iron from Heme. Microbes. Infect. 6(4), 390–397 (2004)Google Scholar
  14. 14.
    Stehr, M.O.: A Rewriting Semantics for Algebraic Nets. In: Girault, C., Valk, R. (eds.) Petri Nets for System Engineering - A Guide to Modelling, Verification, and Applications (2000)Google Scholar
  15. 15.
    Yeh, I., Hanekamp, T., Tsoka, S., Karp, P.D., Altman, R.B.: Computa-tional Analysis of Plasmodium falciparum metabolism: Organizing Genomic Information to Facilitate Drug Discovery. Genome Res. 14(5), 917–924 (2004)Google Scholar
  16. 16.
    Ton-That, H., Schneewind, O.: Assembly of Pili on the Surface of Cory-nebacterium diphtheriae. Mol. Microbiol. 50(4), 1429–1438 (2003)Google Scholar
  17. 17.
    Mazmanian, S.K., Liu, G., Jensen, E.R., Lenoy, E., Schneewind, O.: Staphylococcus aureus Sortase Mutants Defective in the Display of Surface Proteins and in the Pathogenesis of Animal Infections. Proc. Natl. Acad. Sci. U S A 97(10), 5510–5515 (2000)Google Scholar
  18. 18.
    Mazmanian, S.K., Ton-That, H., Su, K., Schneewind, O.: An Iron-Regulated Sortase Anchors a Class of Surface Protein During Staphylo-coccus aureus Pathogenesis. Proc. Natl. Acad. Sci. U S A 99(4), 2293–2298 (2002)Google Scholar
  19. 19.
    Maresso, A.W., Schneewind, O.: Sortase as a Target of Anti-infective Therapy. Pharmacol. Rev. 60(1), 128–141 (2008)Google Scholar
  20. 20.
    Cole, J.N., Aquilina, J.A., Hains, P.G., Henningham, A., Sriprakash, K.S., Caparon, M.G., Nizet, V., Kotb, M., Cordwell, S.J., Djordjevic, S.P., Walker, M.J.: Role of Group A Streptococcus HtrA in the Maturation of SpeB Protease. Proteomics 7(24), 4488–4498 (2007)Google Scholar
  21. 21.
    Ma, Y., Bryant, A.E., Salmi, D.B., Hayes-Schroer, S.M., McIndoo, E., Aldape, M.J., Stevens, D.L.: Identification and Characterization of Bicis-tronic speB and prsA Gene Expression in the Group A Streptococcus. J. Bacteriol. 188(21), 7626–7634 (2006)Google Scholar
  22. 22.
    Tjalsma, H., Kontinen, V.P., Pragai, Z., Wu, H., Meima, R., Venema, G., Bron, S., Sarvas, M., van Dijl, J.M.: The Role of Lipoprotein Processing by Signal Peptidase II in the Gram-positive Eubacterium Bacillus subtilis. Signal peptidase II is Required for the Efficient Secretion of Alpha-amylase, a Non-lipoprotein. J. Biol. Chem. 274(3), 1698–1707 (1999)Google Scholar
  23. 23.
    Sutcliffe, I.C., Harrington, D.J.: Pattern Searches for the Identification of Putative Lipoprotein Genes in Gram-positive Bacterial Genomes. Microbiology 148(7), 2065–2077 (2002)Google Scholar
  24. 24.
    Sebert, M.E., Palmer, L.M., Rosenberg, M., Weiser, J.N.: Microarray-Based Identification of htrA, a Streptococcus pneumoniae Gene that is Regulated by the CiaRH Two-Component System and Contributes to Na-sopharyngeal Colonization. Infect. Immun. 70(8), 4059–4067 (2002)Google Scholar
  25. 25.
    Hollands, A., Aziz, R.K., Kansal, R., Kotb, M., Nizet, V., Walker, M.J.: A Naturally Occurring Mutation in ropB Suppresses SpeB Expression and Reduces M1T1 Group A Streptococcal Systemic Virulence. PLoS One 3(12), e4102 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Anupama Panikkar
    • 1
  • Merrill Knapp
    • 3
  • Huaiyu Mi
    • 2
  • Dave Anderson
    • 1
  • Krishna Kodukula
    • 1
  • Amit K. Galande
    • 1
  • Carolyn Talcott
    • 2
  1. 1.Center for Advanced Drug ResearchSRI InternationalHarrisonburgUSA
  2. 2.Computer Science LabSRI InternationalMenlo ParkUSA
  3. 3.Biosciences DivisionSRI InternationalMenlo ParkUSA

Personalised recommendations