To model voting machine by internet, valuation of classical propositional calculus is extended, and multi-agents valuation of propositional calculus is proposed. Then formal concept analysis is used to express uncertainty of statements, i.e., degrees of truth value, the conclusion points out that non-classical logic systems is necessary to process uncertain information.


Fuzzy Logic Propositional Calculus Simple Statement Formal Context Formal Concept Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Novák, V., Perfilieva, I., Močkoř, J.: Mathematical principles of fuzzy logic. Kluwer Academic Publishers (1999)Google Scholar
  2. 2.
    Novák, V.: Antonyms and linguistic quantifiers in fuzzy logic. Fuzzy Sets and Systems 124, 335–351 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Dvořák, A., Novák, V.: Fromal theories and linguistic descriptions. Fuzzy Sets and Systems 143, 169–188 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bošnjak, I., Madarász, R., Vojvodić, G.: Algebras of fuzzy sets. Fuzzy Sets and Systems 160, 2979–2988 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Couso, I., Dubois, D.: On the variability of the concept of variance for fuzzy random variables. IEEE Transactions on Fuzzy Systems 17(5), 1070–1080 (2009)CrossRefGoogle Scholar
  6. 6.
    Zadeh, L.A.: Fuzzy logic = computing with words. IEEE Trans. Fuzzy Systems 4, 103–111 (1996)CrossRefGoogle Scholar
  7. 7.
    Dubois, D., Prade, H.: Gradualness, uncertainty and bipolarity: Making sense of fuzzy sets. Fuzzy Sets and Systems, doi:10.1016/j.fss.2010.11.007Google Scholar
  8. 8.
    Freund, M.: On the notion of concept I. Artificial Intelligence 172, 570–590 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Fortin, J., Dubois, D., Fargier, H.: Gradual numbers and their application to fuzzy interval analysis. IEEE Transactions on Fuzzy Systems 16(2), 388–402 (2008)CrossRefGoogle Scholar
  10. 10.
    Cooman, G.: A behavioural model for vague probability assessments. Fuzzy Sets and Systems 154, 305–358 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Zadeh, L.A.: Toward a theory of fuzzy information granulation and its centrality in houman reasoning and fuzzy logic. Fuzzy Sets and Systems 90, 103–111 (1997)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Lawry, J.: A voting mechanism for fuzzy logic. International Journal of Approximate Reasoning 19, 315–333 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Lawry, J.: A methodology for computing with words. International Journal of Approximate Reasoning 28, 51–89 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Lawry, J.: A framework for linguistic modelling. Artificial Intelligence 155, 1–39 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Wille, R.: Concepe lattices and conceptual knowledge systems. Comput. Math. Apll. 23(6-9), 493–515 (1992)CrossRefzbMATHGoogle Scholar
  16. 16.
    Lawry, J., Tang, Y.: Granular knowledge representation and inference using labels and label expressions. IEEE Transactions on Fuzzy Systems 18(3), 500–514 (2010)CrossRefGoogle Scholar
  17. 17.
    Pei, Z., Ruan, D., Liu, J., Xu, Y.: Linguistic Values based Intelligent Information Processing: Theory, Methods, and Application. In: Atlantis Computational Intelligence Systems, vol. 1. Atlantis press & World Scientific (2009)Google Scholar
  18. 18.
    Pei, Z., Xu, Y., Ruan, D., Qin, K.: Extracting complex linguistic data summaries from personnel database via simple linguistic aggregations. Information Sciences 179, 2325–2332 (2009)CrossRefzbMATHGoogle Scholar
  19. 19.
    Pei, Z., Resconi, G., Van Der Wal, A.J., Qin, K., Xu, Y.: Interpreting and extracting fuzzy decision rules from fuzzy information systems and their inference. Information Sciences 176, 1869–1897 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Jin, J., Qin, K., Pei, Z.: Reduction-Based Approaches Towards Constructing Galois (Concept) Lattices. In: Wang, G.-Y., Peters, J.F., Skowron, A., Yao, Y. (eds.) RSKT 2006. LNCS (LNAI), vol. 4062, pp. 107–113. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  21. 21.
    Stumme, G., Taouil, R., Bastide, Y., Pasquier, N., Lakhal, L.: Computing iceberg concept lattices with TITANIC. Data & Knowledge Engineering 42, 189–222 (2002)CrossRefzbMATHGoogle Scholar
  22. 22.
    Berry, A., Sigayret, A.: Representing a concept lattice by a graph. Discrete Applied Mathematics 144, 27–42 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Berry, A., SanJuan, E., Sigayret, A.: Generalized domination in closure systems. Discrete Applied Mathematics 154, 1064–1084 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Diday, E., Emilion, R.: Maximal and stochastic Galois lattices. Discrete Applied Mathematics 127, 271–284 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Kim, M., Compton, P.: Evolutionary document management and retrieval for specialized domains on the web. Int. J. Human-Computer Studies 60, 201–241 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Chenfang Zhao
    • 1
  • Zheng Pei
    • 1
  1. 1.School of Mathematics and Computer EngineeringXihua UniversityChengduChina

Personalised recommendations