Event Condition Expectation (ECE-) Rules for Monitoring Observable Systems

  • Stefano Bragaglia
  • Federico Chesani
  • Emory Fry
  • Paola Mello
  • Marco Montali
  • Davide Sottara
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7018)

Abstract

The standardization and broad adoption of Service Oriented Architectures, Web Services, and Cloud Computing is raising the complexity of ICT systems. Hence, assuring correct system behavior with regard to established design and business constraints is of the utmost importance. Run-time monitoring, where the outcomes of an observed system are continuously checked against what is expected of it, is one possible approach to providing the required oversight.

In this paper, we discuss this notion of rule expectations, their violation and/or fulfillment, and use these concepts to define the concept of an Event-Condition-Expectation (ECE-) rule, a variation of the traditional Event-Condition-Action rule pattern. To demonstrate these concepts, we present extensions to the syntax used by the production rule engine, Drools, and describe their use in a medical case study. The clinical decision support system being developed monitors rule evaluations and expectations, detects constraint violations and is able to take recovery/ compensation actions as appropriate.

Keywords

Cloud Computing Post Traumatic Stress Disorder Parent Expectation Abstract Syntax Tree Complex Event Processing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Verifiable agent interaction in abductive logic programming: The SCIFF framework. ACM Trans. Comput. Logic 9(4), 1–43 (2008)CrossRefGoogle Scholar
  2. 2.
    Alberti, M., Gavanelli, M., Lamma, E., Mello, P., Torroni, P., Sartor, G.: Mapping deontic operators to abductive expectations. CMOT 12(2-3), 205–225 (2006)MATHGoogle Scholar
  3. 3.
    Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM 26(11), 832–843 (1983)CrossRefMATHGoogle Scholar
  4. 4.
    Damiani, G., Pinnarelli, L., Colosimo, S., Almiento, R., Sicuro, L., Galasso, R., Sommella, L., Ricciardi, W.: The effectiveness of computerized clinical guidelines in the process of care: a systematic review. BMC-HSR 10(1), 2 (2010), http://www.biomedcentral.com/1472-6963/10/2Google Scholar
  5. 5.
    Desai, N., Chopra, A.K., Singh, M.P.: Representing and reasoning about commitments in business processes. In: AAAI, pp. 1328–1333. AAAI Press (2007)Google Scholar
  6. 6.
    Forgy, C.: Rete: A fast algorithm for the many patterns/many objects match problem. Artif. Intell. 19(1), 17–37 (1982)CrossRefGoogle Scholar
  7. 7.
    Fornara, N., Colombetti, M.: A commitment-based approach to agent communication. Applied Artificial Intelligence 18(9-10), 853–866 (2004)CrossRefGoogle Scholar
  8. 8.
    Governatori, G.: Representing business contracts in ruleml. Int. J. Cooperative Inf. Syst. 14(2-3), 181–216 (2005)CrossRefGoogle Scholar
  9. 9.
    Governatori, G., Hulstijn, J., Riveret, R., Rotolo, A.: Characterising Deadlines in Temporal Modal Defeasible Logic. In: Orgun, M.A., Thornton, J. (eds.) AI 2007. LNCS (LNAI), vol. 4830, pp. 486–496. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Governatori, G., Rotolo, A.: Norm Compliance in Business Process Modeling. In: Dean, M., Hall, J., Rotolo, A., Tabet, S. (eds.) RuleML 2010. LNCS, vol. 6403, pp. 194–209. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Governatori, G., Rotolo, A., Sartor, G.: Temporalised normative positions in defeasible logic. In: ICAIL, pp. 25–34. ACM (2005)Google Scholar
  12. 12.
    JBoss: JBoss Drools 5.2 - Business Logic Integration Platform (2011), www.jboss.org/drools
  13. 13.
    Luckham, D.: The Power of Events: An Introduction to Complex Event Processing in Distributed Enterprise Systems. Addison-Wesley Longman, Amsterdam (2002)Google Scholar
  14. 14.
    Montali, M., Pesic, M., van der Aalst, W.M.P., Chesani, F., Mello, P., Storari, S.: Declarative specification and verification of service choreographiess. TWEB 4(1) (2010)Google Scholar
  15. 15.
    Pesic, M., van der Aalst, W.M.P.: A declarative approach for flexible business processes management. In: Eder, J., Dustdar, S. (eds.) BPM Workshops 2006. LNCS, vol. 4103, pp. 169–180. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Sadiq, S.W., Governatori, G., Namiri, K.: Modeling control objectives for business process compliance. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 149–164. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Singh, M.P., Chopra, A.K., Desai, N.: Commitment-based service-oriented architecture. IEEE Computer 42(11), 72–79 (2009)CrossRefGoogle Scholar
  18. 18.
    Sottara, D., Mello, P., Sartori, C., Fry, E.: Enhancing a production rule engine with predictive models using pmml. In: KDD 2011 (to appear, 2011)Google Scholar
  19. 19.
    Torroni, P., Chesani, F., Mello, P., Montali, M.: Social commitments in time: Satisfied or compensated. In: Baldoni, M., Bentahar, J., van Riemsdijk, M.B., Lloyd, J. (eds.) DALT 2009. LNCS, vol. 5948, pp. 228–243. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  20. 20.
    Torroni, P., Chesani, F., Yolum, P., Gavanelli, M., Singh, M.P., Lamma, E., Alberti, M., Mello, P.: Modelling Interactions via Commitments and Expectations. IGI Global (2009)Google Scholar
  21. 21.
    Yolum, P., Singh, M.P.: Flexible protocol specification and execution: applying event calculus planning using commitments. In: AAMAS, pp. 527–534. ACM (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Stefano Bragaglia
    • 1
  • Federico Chesani
    • 1
  • Emory Fry
    • 2
  • Paola Mello
    • 1
  • Marco Montali
    • 1
  • Davide Sottara
    • 1
  1. 1.DEIS, University of BolognaBolognaItaly
  2. 2.Department of Modeling and SimulationNaval Health Research CenterSan DiegoUSA

Personalised recommendations