Advertisement

Rational Transformations and a Kleene Theorem for Power Series over Rational Monoids

  • Ina Fichtner
  • Christian Mathissen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7020)

Abstract

In this paper we consider transformations on formal power series and extend well-known results in terms of homomorphisms to rational functions. Using these results we prove a Kleene-Schützenberger Theorem for formal power series over rational monoids. It extends a result of Sakarovitch.

Keywords

Rational Series Formal Power Series Free Monoid Principal Ideal Domain Rational Subset 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berstel, J.: Transductions and Context-Free Languages. B. G. Teubner, Stuttgart (1979)CrossRefzbMATHGoogle Scholar
  2. 2.
    Berstel, J., Reutenauer, C.: Rational Series and Their Languages. EATCS Monographs on Theoretical Computer Science, vol. 12. Springer, Heidelberg (1988)CrossRefzbMATHGoogle Scholar
  3. 3.
    Borchardt, B.: The Myhill-Nerode theorem for recognizable tree series. In: Ésik, Z., Fülöp, Z. (eds.) DLT 2003. LNCS, vol. 2710, pp. 146–158. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Bozapalidis, S.: Effective construction of the syntactic algebra of a recognizable series on trees. Acta Informatica 28(4), 351–363 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bozapalidis, S., Alexandrakis, A.: Représentations matricielles des séries d’arbre reconnaissables. Theoretical Informatics and Applications 23(4), 449–459 (1989)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Bozapalidis, S., Louscou-Bozapalidou, O.: The rank of a formal tree power series. Theoretical Computer Science 27, 211–215 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Droste, M., Zhang, G.: On transformations of formal power series. Information and Computation 184(2), 369–383 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Droste, M., Kuske, D.: Recognizable languages in divisibility monoids. Mathematical Structures in Computer Science 11(6), 743–770 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Eilenberg, S.: Automata, Languages, and Machines, vol. A. Academic Press, London (1974)zbMATHGoogle Scholar
  10. 10.
    Fülöp, Z., Vogler, H.: Weighted tree automata and tree series transducers. In: Droste, M., Kuich, W., Vogler, H. (eds.) Handbook of Weighted Automata. EATCS Monographs on Theoretical Computer Science, ch. 9. Springer, Heidelberg (2009)Google Scholar
  11. 11.
    Kuich, W., Salomaa, A.: Semirings, Automata, Languages. EATCS Monographs on Theoretical Computer Science, vol. 5. Springer, Heidelberg (1986)CrossRefzbMATHGoogle Scholar
  12. 12.
    Kuske, D.: Contributions to a Trace Theory beyond Mazurkiewicz Traces. PhD Thesis, Technische Universität Dresden (2000)Google Scholar
  13. 13.
    Lang, S.: Algebra. Springer, Heidelberg (2002)CrossRefzbMATHGoogle Scholar
  14. 14.
    Pelletier, M., Sakarovitch, J.: Easy multiplications II. Extensions of rational semigroups. Information and Computation 88(1), 18–59 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Reutenauer, C.: Séries formelles et algèbres syntactiques. Journal of Algebra 66, 448–483 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Sakarovitch, J.: Easy multiplications I. The realm of Kleene’s theorem. Information and Computation 74(3), 173–197 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press, Cambridge (2009)CrossRefzbMATHGoogle Scholar
  18. 18.
    Salomaa, A., Soittola, M.: Automata-Theoretic Aspects of Formal Power Series. Texts and Monographs in Computer Science. Springer, Heidelberg (1978)CrossRefzbMATHGoogle Scholar
  19. 19.
    Schützenberger, M.: On the definition of a family of automata. Information and Control 4, 245–270 (1961)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Ina Fichtner
    • 1
  • Christian Mathissen
    • 1
  1. 1.Institut für InformatikUniversität LeipzigGermany

Personalised recommendations