Advertisement

Where Automatic Structures Benefit from Weighted Automata

  • Dietrich Kuske
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7020)

Abstract

In this paper, we report on applications of weighted automata in the theory of automatic structures. All (except one) result were known before, but their proof using weighted automata is novel. More precisely, we prove that the extension of first-order logic by the infinity ∃  ∞ , the modulo ∃ (p,q), and the (new) boundedness quantifier Open image in new window is decidable. The first two quantifiers are handled using closure properties of the class of recognizable formal power series and the fact that the preimage of a value under a recognizable formal power series is regular if the semiring is finite. Our reasoning regarding the boundedness quantifier uses Weber’s decidability result of finite-valued rational transductions. We also show that the isomorphism problem of automatic structures is undecidable using an undecidability result on recognizable formal power series due to Honkala.

Keywords

Boolean Algebra Formal Power Series Isomorphism Problem Tree Automaton Automatic Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bárány, V.: Invariants of automatic presentations and semi-synchronous transductions. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 289–300. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Bárány, V., Grädel, E., Rubin, S.: Automata-based presentations of infinite structures. In: Finite and Algorithmic Model Theory, pp. 1–76. Cambridge University Press, Cambridge (2011)CrossRefGoogle Scholar
  3. 3.
    Bárány, V., Kaiser, Ł., Rubin, S.: Cardinality and counting quantifiers on omega-automatic structures. In: STACS 2008, pp. 385–396. IFIB Schloss Dagstuhl (2008)Google Scholar
  4. 4.
    Blumensath, A.: Automatic structures. Tech. rep., RWTH Aachen (1999)Google Scholar
  5. 5.
    Blumensath, A., Grädel, E.: Automatic Structures. In: LICS 2000, pp. 51–62. IEEE Computer Society Press, Los Alamitos (2000)Google Scholar
  6. 6.
    Braun, G., Strüngmann, L.: Breaking up finite automata presentable torsion-free abelian groups. International Journal of Algebra and Computation (accepted, 2011)Google Scholar
  7. 7.
    Campbell, C., Robertson, E., Ruškuc, N., Thomas, R.: Automatic semigroups. Theoretical Computer Science 250, 365–391 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Corran, R., Hoffmann, M., Kuske, D., Thomas, R.: Singular Artin monoids of finite type are automatic. In: Dediu, A.-H., Inenaga, S., Martín-Vide, C. (eds.) LATA 2011. LNCS, vol. 6638, pp. 250–261. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Delhommé, C.: Automaticité des ordinaux et des graphes homogènes. C. R. Acad. Sci. Paris, Ser. I 339, 5–10 (2004)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Delhommé, C., Goranko, V., Knapik, T.: Automatic linear orderings (2003) (manuscript)Google Scholar
  11. 11.
    Droste, M., Kuich, W.: Semirings and formal power series. In: Droste, M., Kuich, W., Vogler, H. (eds.) Handbook of Weighted Automata, pp. 3–28. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Elgot, C.: Decision problems of finite automata design and related arithmetics. Trans. Am. Math. Soc. 98, 21–51 (1961)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Epstein, D., Cannon, J., Holt, D., Levy, S., Paterson, M., Thurston, W.: Word Processing In Groups. Jones and Bartlett Publishers, Boston (1992)zbMATHGoogle Scholar
  14. 14.
    Ershov, Y., Goncharov, S., Nerode, A., Remmel, J. (eds.): Handbook of recursive mathematics, vol. 1, 2. Elsevier, Amsterdam (1998)zbMATHGoogle Scholar
  15. 15.
    Fohry, E., Kuske, D.: On graph products of automatic and biautomatic monoids. Semigroup Forum 72, 337–352 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Hodges, W.: Model Theory. Cambridge University Press, Cambridge (1993)CrossRefzbMATHGoogle Scholar
  17. 17.
    Hodgson, B.: On direct products of automaton decidable theories. Theoretical Computer Science 19, 331–335 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Honkala, J.: On the problem whether the image of an ℕ-rational series equals ℕ. Fundamenta Informaticae 73(1-2), 127–132 (2006)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Khoussainov, B., Nerode, A.: Automatic presentations of structures. In: Leivant, D. (ed.) LCC 1994. LNCS, vol. 960, pp. 367–392. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  20. 20.
    Khoussainov, B., Nies, A., Rubin, S., Stephan, F.: Automatic structures: richness and limitations. Log. Methods in Comput. Sci. 3(2) (2007)Google Scholar
  21. 21.
    Khoussainov, B., Rubin, S., Stephan, F.: Definability and regularity in automatic structures. In: Diekert, V., Habib, M. (eds.) STACS 2004. LNCS, vol. 2996, pp. 440–451. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  22. 22.
    Khoussainov, B., Rubin, S., Stephan, F.: Automatic linear orders and trees. ACM Transactions on Computational Logic 6(4), 675–700 (2005)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Kuske, D.: Is Cantor’s theorem automatic? In: Vardi, M.Y., Voronkov, A. (eds.) LPAR 2003. LNCS, vol. 2850, pp. 332–345. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  24. 24.
    Kuske, D., Liu, J., Lohrey, M.: The isomorphism problem on classes of automatic structures. In: LICS 2010, pp. 160–169. IEEE Computer Society Press, Los Alamitos (2010)Google Scholar
  25. 25.
    Kuske, D., Lohrey, M.: First-order and counting theories of ω-automatic structures. Journal of Symbolic Logic 73, 129–150 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Kuske, D., Lohrey, M.: Some natural problems in automatic graphs. Journal of Symbolic Logic 75(2), 678–710 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Nies, A.: Describing groups. Bulletin of Symbolic Logic 13(3), 305–339 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Oliver, G., Thomas, R.: Automatic presentations for finitely generated groups. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 693–704. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  29. 29.
    Rubin, S.: Automata presenting structures: A survey of the finite string case. Bulletin of Symbolic Logic 14, 169–209 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Sakarovitch, J.: Easy multiplications. I. The realm of Kleene’s Theorem. Information and Computation 74, 173–197 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Sakarovitch, J.: Rational and recognizable series. In: Droste, M., Kuich, W., Vogler, H. (eds.) Handbook of Weighted Automata, pp. 405–453. Springer, Heidelberg (2009)Google Scholar
  32. 32.
    Tsankov, T.: The additive group of the rationals does not have an automatic presentation (2009), http://arxiv.org/abs/0905.1505
  33. 33.
    Weber, A.: On the valuedness of finite transducers. Acta Informatica 27, 749–780 (1990)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Dietrich Kuske
    • 1
  1. 1.Institut für Theoretische InformatikTechnische Universität IlmenauGermany

Personalised recommendations